Skip to main content
Log in

Orbit Sum Rules for the Quantum Wave Functions of the Strongly Chaotic Hadamard Billiard in Arbitrary Dimensions

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Sum rules are derived for the quantum wave functions of the Hadamard billiard in arbitrary dimensions. This billiard is a strongly chaotic (Anosov) system which consists of a point particle moving freely on a D-dimensional compact manifold (orbifold) of constant negative curvature. The sum rules express a general (two-point)correlation function of the quantum mechanical wave functions in terms of a sum over the orbits of the corresponding classical system. By taking the trace of the orbit sum rule or pre-trace formula, one obtains the Selberg trace formula. The sum rules are applied in two dimensions to a compact Riemann surface of genus two, and in three dimensions to the only non-arithmetic tetrahedron existing in hyperbolic 3-space. It is shown that the quantum wave functions can be computed from classical orbits. Conversely, we demonstrate that the structure of classical orbits can be extracted from the quantum mechanical energy levels and wave functions (inverse quantum chaology).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, New York, 1990).

    Google Scholar 

  2. N. Bohr, “On the quantum theory of line-spectra,” Kgl. Vidensk. Selsk. Skrifter, Natur-vidensk. og Mathem. Afd. 8 Raekke IV.1, 1–36 (1918).

    Google Scholar 

  3. M. C. Gutzwiller, “Energy spectrum according to classical mechanics,” J. Math. Phys. 11, 1791–1806 (1970).

    Google Scholar 

  4. M. C. Gutzwiller, “Periodic orbits and classical quantization conditions,” J. Math. Phys. 12, 343–358 (1971).

    Google Scholar 

  5. M. Sieber and F. Steiner, “Generalized periodic-orbit sum rules for strongly chaotic systems,” Phys. Lett. A 144, 159–163 (1990).

    Google Scholar 

  6. A. Selberg, “Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series,” J. Indian Math. Soc. (N.S.) 20, 47–87 (1956).

    Google Scholar 

  7. D. A. Hejhal, The Selberg Trace Formula for PSL(2, ℝ), Vol. 1 (Lecture Notes in Mathematics, Vol. 548) (Springer, Berlin, 1976).

    Google Scholar 

  8. D. A. Hejhal, The Selberg Trace Formula for PSL(2, ℝ), Vol. 2 (Lecture Notes in Mathematics, Vol. 1001) (Springer, Berlin, 1983).

    Google Scholar 

  9. J. Hadamard, “Les surfaces à courbures opposées et leurs lignes géodésiques,” J. Math. Pures et Appl. 4, 27–73 (1898); see also Oeuvres Complètes de Jacques Hadamard, Vol. 2 (Paris, 1968), pp. 729-775.

    Google Scholar 

  10. J. Hadamard, “Sur le billard non-Euclidien,” Soc. Sci. Bordeaux, Procès Verbaux 1898, 147 (1898).

  11. V. I. Arnold and A. Avez, Ergodic Problems of Classical Mechanics (Addison-Wesley, New York, 1968).

  12. M. C. Gutzwiller, “Classical quantization of a Hamiltonian with ergodic behavior,” Phys. Rev. Lett. 45, 150–153 (1980).

    Google Scholar 

  13. M. V. Berry, “Semiclassical theory of spectral rigidity,” Proc. Roy. Soc. London A 400, 229–251 (1985).

    Google Scholar 

  14. R. Aurich and F. Steiner, “Periodic-orbit theory of the number variance Σ2(L) of strongly chaotic systems,” Physica D 82, 266–287 (1995).

    Google Scholar 

  15. E. B. Bogomolny and J. P. Keating, “Gutzwiller's trace formula and spectral statistics: Beyond the diagonal approximation,” Phys. Rev. Lett. 77, 1472–1475 (1996).

    Google Scholar 

  16. R. Aurich and F. Steiner, “Exact theory for the quantum eigenstates of a strongly chaotic system,” Physica D 48, 445–470 (1991).

    Google Scholar 

  17. D. V. Anosov, “Geodesic flows on closed Riemannian manifolds with negative curvature,” Proc. Steklov Institute of Mathematics 90, 1–235 (1967).

    Google Scholar 

  18. R. Aurich and J. Marklof, “Trace formulae for three-dimensional hyperbolic lattices and application to a strongly chaotic tetrahedral billiard,” Physica D 118, 101–129 (1996).

    Google Scholar 

  19. J. R. Bond, D. Pogosyan, and T. Souradeep, “CMB anisotropy in compact hyperbolic universes I: Computing correlation functions,” Phys. Rev. D 62, 043005-1-20 (Sept. 2000).

    Google Scholar 

  20. J. R. Bond, D. Pogosyan, and T. Souradeep, “CMB anisotropy in compact hyperbolic universes II: COBE maps and limits,” Phys. Rev. D 62, 043006-1-21 (Sept. 2000).

    Google Scholar 

  21. C. Grosche and F. Steiner, “The path integral on the pseudosphere,” Ann. Phys. (N.Y.) 182, 120–156 (1988).

    Google Scholar 

  22. R. Aurich, M. Sieber, and F. Steiner, “Quantum chaos of the Hadamard-Gutzwiller model,” Phys. Rev. Lett. 61, 483–487 (1988).

    Google Scholar 

  23. R. Aurich and F. Steiner, “Periodic-orbit sum rules for the Hadamard-Gutzwiller model, Physica D 39, 169–193 (1989).

    Google Scholar 

  24. R. Aurich and J. Bolte, “Quantization rules for strongly chaotic systems,” Mod. Phys. Lett. B 6, 1691–1719 (1992).

    Google Scholar 

  25. A. F. Beardon, The Geometry of Discrete Groups (Springer, New York, 1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aurich, R., Steiner, F. Orbit Sum Rules for the Quantum Wave Functions of the Strongly Chaotic Hadamard Billiard in Arbitrary Dimensions. Foundations of Physics 31, 569–592 (2001). https://doi.org/10.1023/A:1017560808268

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017560808268

Keywords

Navigation