Skip to main content
Log in

New Problematic Aspects of Current String Theories and Their Invariant Resolution

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We identify new, rather serious, physical and mathematical inconsistencies of the current formulation of noncanonical or nonunitary string theories due to the lack of invariant units necessary for consistent measurements, lack of preservation in time of Hermiticity-observability, and other shortcomings. We propose three novel reformulations of string theories for matter of progressively increasing complexity via the novel iso-, geno-, and hyper-mathematics of hadronic mechanics, which resolve the current inconsistencies, while offering new intriguing possibilities, such as: an axiomatically consistent and invariant inclusion of gravity, the reduction of macroscopic irreversibility to the most primitive level of vibrations of the universal substratum (ether), or the treatment of multi-valued, irreducible, biological structures. We then identify three corresponding classical formulations of string theories for antimatter via the novel anti-isomorphic isodual mathematics. We finally outline the intriguing features of the emerging new cosmologies (including biological structures, as it should be for all cosmologies), such as: universal invariance (rather than covariance) under a symmetry isomorphic to the Poincaré group and its isodual; equal distributions of matter and antimatter in the universe (as a limit case); continuous creation; no need for the missing mass; significantly reduced dimensions; possibility of experimental identification of antimatter in the universe; identically null total characteristics of time, energy, linear and angular momentum, charge, etc.; and other intriguing features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. S. Okubo, Hadronic J. 5, 1667 (1982); (b) D. F. Lopez, in Symmetry Methods in Physics (Smorodinski Memorial), A. N. Sissakian, G. S. Pogosyan, and X. I. Vinitsky, eds. (JINR, Dubna, Russia, 1994), and Hadronic J. 16, 429 (1993); (c) A. Jannussis and D. Skaltsas, Ann. Fond. L. de Broglie 18, 137 (1993); (d) A. Jannussis, R. Mignani, and R. M. Santilli, Ann. Fond. L. de Broglie 18, 371 (1993); (e) D. Schuch, Phys. Rev. A 55, 955 (1997); (f) R. M. Santilli, Modern Phys. Letters 13, 327 (1998); (g) R. M. Santilli, “Problematic aspects and invariant formulation of classical and quantum deformations,” Int. J. Mod. Phys. A 14, 3157 (1999).

    Google Scholar 

  2. N. Sanches, ed., String Theory on Curved spacetimes (World Scientific, 1998); (b) M. Gasperini, M. Giovannini, K. A. Meissner, and G. Veneziano, in String Theory on Curved Spacetimes, N. Sanches, ed. (World Scientific, 1998); (c) M. Kaku, Beyond Einstein (Anchor Books, 1995).

  3. R. M. Santilli, “Why space is rigid” (in Italian), in Il Pungolo Verde (Campobasso, Italy, 1956); (b) Nuovo Cimento 51, 570 (1967); (c) Hadronic J. 1, 224, 574, and 1267 (1978); (d) Lett. Nuovo Cimento 3, 509, (1983); (e) Algebras, Groups and Geometries 10, 273 (1993); (f) Rendiconti Circolo Matematico Palermo, Suppl. 42, 7 (1996); (g) Found. Phys. 27, 625 (1997); (h) J. Moscow Phys. Soc. 3, 255 (1993); (i) in Proceedings of the VII M. Grossmann Meeting on General Relativity, R. T. Jantzen et al., eds. (World Scientific, 1996), p. 500; (j) Int. J. Mod. Phys. D 7, 351 (1998); (k) in Proceedings of the VIII M. Grossmann Meeting on General Relativity, Vol. 14, Jerusalem, June 1997 (World Scientific, 1999), p. 3157; (l) Found. Phys. Letters 4, 307 (1997); (m) in Modern Modified Theories of Gravitation and Cosmology, E. I. Guendelman, ed.; Hadronic J. 21, 113 (1998); (n) Found. Phys. 27, 1159 (1997); (o) Hyperfine Interactions, 109, 63 (1997); (p) Int. J. Mod. Phys. A 14, 2205 (1999); (q) Foundations of Theoretical Mechanics, Vol. I (1978) and II (1983) (Springer, Heidelberg/ New York); (r) Isotopic Generalization of Galilei's and Einstein's Relativities (Hadronic Press, 1991); (s) Elements of Hadronic Mechanics, Vol. I (1995) II (1995), and III (in preparation) (Ukraine Academy of Sciences, Kiev, 1995); (t) Isotopic, Genotopic, and Hyperstructural Method in Theoretical Biology (Ukraine Academy of Sciences, Kiev, 1996); (u) Foundations of Hadronic Chemistry with Applications to New Clean Energies and Fuels (Kluwer Academic Publishers, Boston/Dordrecht/London, 2001).

    Google Scholar 

  4. S. L. Adler, Phys. Rev. 17, 3212 (1978); Cl. George, F. Henin, F. Mayene, and I. Prigogine, Hadronic J. 1, 520 (1978); C. N. Ktorides, H. C. Myung, and R. M. Santilli, Phys. Rev. D 22, 892 (1980); R. Mignani, Hadronic J. 4, 2191 (1981); G. Eder, Hadronic J. 4, (1981) and 5, 750 (1982); C. Myung and R. M. Santilli, Hadronic J. 5, 1277 (1982); R. Mignani, Nuovo Cimento Lett. 39, 413 (1984); M. Nishioka, Nuovo Cimento 82A, 351 (1984); M. Gasperini, Hadronic J. 7, 971 (1984); E. B. Lin, Hadronic J. 11, 81 (1988); A. Jannussis, R. Mignani, and D. Skaltsas, Physics A 187, 575 (1992); D. Rapoport-Campodonico, Algebras, Groups, and Geometries 8, 1 (1991); F. Cardone et al., Phys. C 18, L61 and L141 (1992); N. Kamiya et al., Hadronic J. 16, 168 (1993); A. J. Kalnay, Hadronic J. 6, 1 (1983): T. Gill, J. Lindesay and W. W. Zachary, Hadronic J. 17, 449 (1994); Gr. T. Tsagas and D. S. Sourlas, Algebras, Groups and Geometries 12, 1, 67 (1995) [7a]; 13, 129 (1996); A. O. E. Animalu and R. M. Santilli, Int. J. Quantum Chemistry 29, 175 (1995); J. V. Kadeisvili, Math. Methods in Applied Sciences 19, 362 (1996) [8d]; J. Ellis, N. E. Mavromatos, and D. V. Nanopoulos, in Proceedings of the Erice Summer School, 31st Course: From Superstrings to the Origin of Space-Time (World Scientific, 1996); R. Aslaner and S. Keles, Algebras, Groups and Geometries 14, 211 (1997); S. Vacaru, Algebras, Groups and Geometries 14, 225 (1997); C. X. Jiang, Algebras, Groups and Geometries 15, 351 (1998); E. Trell, Algebras, Groups and Geometries 15, 299 (1998); Yu. Arestov et al., Found. Phys. Lett., in press.

    Google Scholar 

  5. A. K. Aringazin, A. Jannussis, D. F. Lopez, M. Nishioka, and B. Veljanosky, Santilli's Lie-Isotopic Generalization of Galilei's and Einstein's Relativities (Kostarakis Publisher, Athens, Greece, 1990); D. S. Sourlas and G. T. Tsagas, Mathematical Foundations of the Lie- Santilli Theory (Ukraine Academy of Sciences, Kiev, 1993); J. Lôhmus, E. Paal, and L. Sorgsepp, Nonassociative Algebras in Physics (Hadronic Press, Palm Harbor, Florida, 1994); J. V. Kadeisvili, Santilli's Isotopies of Contemporary Algebras, Geometries and Relativities, 2nd edn. (Ukraine Academy of Sciences, Kiev, 1996); S. Vacaru, Interactions, Strings and Isotopies in Higher Order Anisotropic Superspaces (Hadronic Press, 1999); C. X. Jiang, An Introduction to Santilli's Isonumber Theory (Hadronic Press, to appear in 1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santilli, R.M. New Problematic Aspects of Current String Theories and Their Invariant Resolution. Foundations of Physics 32, 1111–1140 (2002). https://doi.org/10.1023/A:1016586710624

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016586710624

Navigation