Advertisement

Applied Mathematics and Mechanics

, Volume 22, Issue 9, pp 1057–1063 | Cite as

Computation Formulas of Generalized Inverse Padé Approximants Using for Solution of Integral Equations

  • Chuan-qing Gu
  • Chun-jing Li
Article

Abstract

For the generalized inverse function-valued Padé approximants, its intact computation formulas are given. The explicit determinantal formulas for the denominator scalar polynomials and the numerator function-valued polynomials are first established. A useful existence condition is given by means of determinant form.

Padé approximant determinantal formula existence integral equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Graves-Morris P R. Solution of integral equations using generalized inverse, function-valued Padé approximants [J]. J Comput Appl Math,1990,32(1):117–124.Google Scholar
  2. [2]
    Chisholm J S R. Solution of integral equations using Padé approximants [J]. J Math Phys,1963,4(12):1506–1510.Google Scholar
  3. [3]
    Graves-Morris P R, Jenkins C D. Vector valued rational interpolants III [J]. Constr Approx,1986, 2(2):263–289.Google Scholar
  4. [4]
    GU Chuan-qing. Generalized inverse matrix valued Padé approximants [J]. Numer Sinica, 1997,19(1):19–28. (in Chinese)Google Scholar
  5. [5]
    GU Chuan-qing. Thiele-type and Largrange-type generalized inverse rational interpolation for rectangular complex matrices [J]. Linear Algebra Appl,1999,295(1):7–30.Google Scholar
  6. [6]
    Baker G A. The Numerical Treatment of Integral Equations [M]. Oxford: Oxford Univ Press, 1978.Google Scholar
  7. [7]
    Sloan I H. Improvement by iteration for compact operator equations [J]. Math Comp,1976,30(4): 758–764.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Chuan-qing Gu
    • 1
  • Chun-jing Li
    • 2
  1. 1.Department of MathematicsShanghai UniversityShanghaiP R China
  2. 2.Department of MathamaticsTongji UniversityShanghaiP R China

Personalised recommendations