Advertisement

Cytotechnology

, Volume 37, Issue 1, pp 41–47 | Cite as

Protection of hybridoma cells against apoptosis by a loop domain-deficient Bcl-xL protein

  • Joel Charbonneau
  • Eric Gauthier
Article

Abstract

The ectopic expression of several members of the Bcl-2 family of anti-apoptotic proteins is a promising strategy to improve the viability of hybridoma cells in culture. However, the impact of post-translational modifications on the function of these proteins in murine hybridomas is unknown. To address this issue, the anti-apoptotic properties of a mutant of Bcl-xL devoid of the so-called “loop domain„ (Bcl-xL▵ 46-83) were investigated using the Sp2/ O-Ag14 hybridoma model. Clones of Sp2/ O-Ag14 cells expressing Bcl-xL▵ 46-83 exhibited resistance against L-glutamine deprivation to similar levels than cells expressing the wild type protein. In contrast, protection against the cytotoxic effects of cycloheximide (CHX) was highly dependent on the level of expression of the Bcl-xL▵ 46-83 mutant. Analysis of the growth behaviour of the transfected cells showed that Bcl-xL▵ 46-83 was superior to the wild type protein in prolonging Sp2/ O-Agl4 cell viability in stationary batch culture. Furthermore, the prolongation of cell viability in batch culture was directly proportional to the level of expression of the mutated protein. Our results indicate that removal of the loop domain improves the anti-apoptotic activity of Bcl-xL in hybridoma cells grown in stationary batch culture.

Apoptosis Bcl-xL Cell viability Hybridoma Loop domain Mutagenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Rubeai M. and Singh R.P. 1998. Apoptosis in cell culture.Curr. Opin. Biotechnol.9:152–156.PubMedCrossRefGoogle Scholar
  2. Chang B.S., Minn A.J., Muchmore S.W., Fesik S.W. and Thompson C.B. 1997. Identification of a novel regulatory domain BclX(L) and Bcl-2.Embo. J. 16: 968–977.PubMedCrossRefGoogle Scholar
  3. Charbonneau J.R. and Gauthier E.R. 2000. Prolongation of murine hybridoma cell survival in stationary batch culture by Bcl-expression.Cytotechnology 34:131–139.CrossRefGoogle Scholar
  4. Cheng E.H.-Y., Kirsch D.G., Clem R.J., Ravi R., Kastan M.B., Bedi A. et al. 1997. Conversion of bcl-2 to a bax-like death effector by caspases. Science 278:1966–1968.PubMedCrossRefGoogle Scholar
  5. Cotter T.G. and Al-Rubeai M. 1995. Cell death (apoptosis) in cell nutrientculture systems. Trends Biotechnol. 13:150–155.PubMedCrossRefGoogle Scholar
  6. Dimmeler S., Breitschopf K., Haendeler J. and Zeiher A.M. 1999. Dephosphorylation targets Bcl-2 for ubiquitin-dependent degra-oxygendation: a link between the apoptosome and the proteasome pathway. J. Exp. Med. 189:1815–1822.PubMedCrossRefGoogle Scholar
  7. Fadeel B., Zhivotovsky B. and Orrenius S. 1999. All along the watchtower: on the regulation of apoptosis regulators. FASEB J. 13:1647–1657.PubMedGoogle Scholar
  8. Fang G., Chang B.S., Kim C.N., Perkins C., Thompson C.B. and Bhalla K.N. 1998. “Loop” domain is necessary for taxol-in-duced mobility shift and phosphorylation of Bcl-2 as well as for inhibiting taxol-induced cytosolic accumulation of cytochrome c and apoptosis. Cancer Res. 58:3202–3208.PubMedGoogle Scholar
  9. Fassnacht D., Rossing S., Franek F., Al-Rubeai M. and Portner R. 1998. Effect of Bcl-2 expression on hybridoma cell growth in serum-supplemented, protein-free and diluted media. Cytotech-overexpresnology 26:219–225.CrossRefGoogle Scholar
  10. Figueroa B., Sauerwald T.M., Mastrangelo A.J., Hardwick J.M. and Betenbaugh M.J. 2001.Comparison of Bcl-2 to a Bcl-2 deletion mutant for mammalian cells exposed to culture insults.Biotech-nol. Bioeng. 73:211–222.CrossRefGoogle Scholar
  11. Franek F. 1995.Starvation-induced programmed death of hybrid-oma cells: prevention by amino acid mixtures.Biotechnol. Bioeng. 45:86–90.CrossRefGoogle Scholar
  12. Fujita N. and Tsuruo T. 1998.Involvement of Bcl-2 cleavage in the conacceleration of VP-16-induced U937 cell apoptosis.Biochem. Biophys. Res. Commun. 24:484–488.CrossRefGoogle Scholar
  13. Fujita T., Terada S., Fukuoa K., Kitayama A., Ueda H. and Suzuki E. 1997. Reinforcing apoptosis-resistance of COS and myeloma cells by transfecting with bcl-2 gene.Cytotechnology 25:25–33.CrossRefGoogle Scholar
  14. Gauthier E.R., Piche L., Lemieux G. and Lemieux R. 1996. Role of bcl-xL in the control of apoptosis in murine myeloma cells. Cancer Res. 56:1451–1456.PubMedGoogle Scholar
  15. Haldar S., Chintapalli J. and Croce C.M. 1996.Taxol induces bcl-2 phosphorylation and death of prostate cancer cells.Cancer Res. 56:1253–1255.PubMedGoogle Scholar
  16. Ito T., Deng X., Carr B. and May W.S. 1997. Bcl-2 phosphorylation required for anti-apoptosis function.J. Biol. Chem. 272:11671–11673.PubMedCrossRefGoogle Scholar
  17. Itoh Y., Ueda H. and Suzuki E. 1995. Overexpression of bcl-2, apoptosis suppressing gene: prolonged viable culture period of hybridoma and enhanced antibody production.Biotechnol. Bioeng. 48:118–122.CrossRefGoogle Scholar
  18. Mercille S. and Massie B. 1994a. Induction of apoptosis in nutrientculture deprived cultures of hybridoma and myeloma cells. Biotechnol. Bioeng. 44:1140–1154.CrossRefGoogle Scholar
  19. Mercille S. and Massie B. 1994b.Induction of apoptosis in oxygendation: deprived cultures of hybridoma cells.Cytotechnology 15:117–128.PubMedCrossRefGoogle Scholar
  20. Mercille S., Jolicoeur P., Gervais C., Paquette D., Mosser D.D. and Massie B. 1999. Dose-dependent reduction of apoptosis in nutrient-limited cultures of NS/O myeloma cells transfected with the E1B-19K adenoviral gene. Biotechnol. Bioeng. 63:516–528.PubMedCrossRefGoogle Scholar
  21. Muchmore S.W., Sattler M., Liang H., Meadows R.P., Harlan J.E., Yoon H.S. et al. 1996. X-ray and NMR structure of human Bcl-X, an inhibitor of programmed cell death. Nature 381:335–341.PubMedCrossRefGoogle Scholar
  22. Murray K., Ang C.-E., Gull K., Hickman J.A. and Dickson A.J. 1996. NSO myeloma cell death: influence of Bcl-2 overexpresnology sion.Biotechnol. Bioeng. 51:298–304.CrossRefGoogle Scholar
  23. Perreault J. and Lemieux R. 1993.Essential role of optimal protein synthesis in preventing the apoptotic death of cultured B cell hybridomas.Cytotechnology 13:99–105.PubMedCrossRefGoogle Scholar
  24. Pont-Kingdon G. 1994. Construction of chimeric molecules by a two-step recombinant PCR method.Biotechniques 16:1010–1011.PubMedGoogle Scholar
  25. Simpson N.H., Milner A.E. and Al-Rubeai M. 1997.Prevention of hybridoma cell death by Bcl-2 during suboptimal culture conacceleration ditions.Biotechnol. Bioeng. 54:1–16.CrossRefGoogle Scholar
  26. Simpson N.H., Singh R.P., Perani A., Goldenzon C. and Al-Rubeai M. 1998. In hybridoma cultures, deprivation of any amino acids leads to apoptotic death, which is suppressed by the expression of the bcl-2 gene.Biotechnol. Bioeng. 59:90–98.PubMedCrossRefGoogle Scholar
  27. Singh R.P., Al-Rubeai M., Gregory C.D. and Emery A.N. 1994. Cell death in bioreactors: a role for apoptosis. Biotechnol. Bioeng. 44:720–726.CrossRefGoogle Scholar
  28. Terada S., Fukuoka K., Fujita T., Komatsu T., Takayama S., Reed J.C. et al. 1997. Anti-apoptotic genes, bag-1 and bcl-2, enabled hybridoma cells to survive under treatment for arresting cell cycle.Cytotechnology 25:17–23.PubMedCrossRefGoogle Scholar
  29. Yokote H., Terada T., Matsumoto H., Kakishita K., Kinoshita Y., Nakao N. et al. 2000. Dephosphorylation-induced decrease of anti-apoptotic function of Bcl-2 in neuronally differentiated P19 cells following ischemic insults.Brain Res. 857:78–86.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Joel Charbonneau
    • 1
  • Eric Gauthier
    • 2
  1. 1.Cellular Biochemistry Research Laboratory , Department of Chemistry and BiochemistryLaurentian UniversityCanada
  2. 2.Department of Chemistry and BiochemistryLaurentian UniversitySudburyCanada

Personalised recommendations