Skip to main content
Log in

Quintessence and Dark Matter Created by Weyl–Dirac Geometry

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A spatially closed universe undergoing at present accelerated expansion, having a non-vanishing cosmological constant, and filled with luminous- and dark matter is described in terms of the Integrable Weyl–Dirac theory. It is shown that, during the dust-dominated period, dark matter and the quintessence pressure, the latter giving rise to acceleration: both are created by the Dirac gauge function. The behavior of two models: a nearly flat one and a well closed are considered in appropriate gauges, and plausible scenarios are obtained. The outcome of the present paper, together with results of a previous work,(31) provide a geometrically based, classical, singularity-free model of the universe, that has originated from a pure geometric Weyl–Dirac entity, passed a prematter period, the radiation-dominated era, and continues its development in the present dust period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. K. C. Freeman, Astrophys. J. 160, 811 (1970).

    Google Scholar 

  2. D. H. Rogstad and G. S. Shostak, Astrophys. J. 176, 315 (1972).

    Google Scholar 

  3. J. P. Ostriker, P. J. E. Peebles, and A. Yahil, Astrophys. J. Lett. 193, L1 (1974).

    Google Scholar 

  4. V. Trimble, Ann. Rev. Astron. Astrophys. 25, 425 (1987).

    Google Scholar 

  5. J. Kormendy and G. R. Knapp, eds., Dark Matter in the Universe (Reidel, Dordrecht, The Netherlands, 1987).

    Google Scholar 

  6. M. Turner, Phys. Scripta, T 36, 167, (1991).

    Google Scholar 

  7. S. Tremaine, Phys. Today 45, No. 2, 28 (1992).

    Google Scholar 

  8. A. Tyson, Phys. Today 45, No. 6 (1992).

  9. W. Priester, J. Hoell, and H.-J. Blome, Comments Astrophys. 17, 327 (1995).

    Google Scholar 

  10. M. Israelit and N. Rosen, Found. Phys. 25, 763 (1995).

    Google Scholar 

  11. M. Israelit, in Proceedings of the Third Alexander Friedmann Int. Seminar on Gravitation and Cosmology, Gnedin et al. (eds.) (Friedmann Laboratory Publishing, St. Petersburg, 1995), pp. 126–143.

    Google Scholar 

  12. M. Israelit, Found. Phys. 29, 1303 (1999).

    Google Scholar 

  13. M. Israelit, The Weyl–Dirac Theory and Our Universe (Nova Science, Commack, New York, 1999).

    Google Scholar 

  14. S. J. Perlmutter et al., Nature (London) 391 51, (1998).

    Google Scholar 

  15. S. J. Perlmutter et al., Astrophys. J. 517, 565 (1999).

    Google Scholar 

  16. A. G. Riess et al., Astron. J. 116, 1009 (1998).

    Google Scholar 

  17. P. M. Garnavich et al, Astrophys. J. 509, 74 (1998).

    Google Scholar 

  18. R. R. Caldwell, Rahul Dave, and Paul J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998).

    Google Scholar 

  19. S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972).

    Google Scholar 

  20. E. Gunzig et al., Phys. Rev. D 63, 067301 (2001).

    Google Scholar 

  21. G. Esposito-Farese and D. Polarski, Phys. Rev. D 63, 063504 (2001).

    Google Scholar 

  22. T. Matos and L. A. Ureña-López, Phys. Rev. D 63, 063506 (2001).

    Google Scholar 

  23. M. S. Turner and M. White, Phys. Rev. D 56, R 4439 (1997).

    Google Scholar 

  24. V. Sahni and L. Wang, Phys. Rev. D 62, 103517 (2000).

    Google Scholar 

  25. P. Binétruy, Phys. Rev. D 60, 063502 (1999); Int. J. Theor. Phys. 39, 1859 (2000).

    Google Scholar 

  26. L. P. Chimento, A. S. Jacubi, and D. Pavón, Phys. Rev. D. 62, 063508 (2000).

    Google Scholar 

  27. E. I. Guendelman, Mod. Phys. Lett. A 14, 1043 (1999); A 14, 1397 (1999); A. B. Kaganovich, Field Theory Model..., hep-th/0007144.

    Google Scholar 

  28. E. I. Guendelman, Class. Quant. Grav. 17, 361 (2000); 17, 3673 (2000); Phys. Rev. D 63, 046006 (2001); E. I. Guendelman and A. B. Kaganovich, Phys. Rev. D 53, 7020 (1996); D 55, 5970 (1997); D 56, 3548 (1997); D 60, 065004 (1999); Mod. Phys. Lett. A 12, 2421 (1997).

    Google Scholar 

  29. A. Hebecker and C. Wetterich, Phys. Rev. Lett. 85, 3339 (2000).

    Google Scholar 

  30. N. Banarjee and D. Pavón, Phys. Rev. D 63, 043504 (2001); Class. Quant. Grav. 18, 593 (2001).

    Google Scholar 

  31. M. Israelit, Found. Phys. 32, 295 (2002).

    Google Scholar 

  32. H. Weyl, Ann. Phys. (Leipzig) 59, 101 (1919).

    Google Scholar 

  33. P. A. M. Dirac, Proc. R. Soc. Lond. A 333, 403 (1973).

    Google Scholar 

  34. N. Rosen, Found. Phys. 12, 213 (1984).

    Google Scholar 

  35. M. Israelit and N. Rosen, Astrophys. J. 342, 627 (1989); Astrophys. Sp. Sc. 204, 317 (1993); N. Rosen and M. Israelit, in Gravitation and Modern Cosmology, A. Zichichi et al., eds. (Plenum, New York, 1991), p. 151.

    Google Scholar 

  36. M. Israelit and N. Rosen, Found. Phys. 22, 555 (1992).

    Google Scholar 

  37. M. Israelit and N. Rosen, Found. Phys. 24, 901 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Israelit, M. Quintessence and Dark Matter Created by Weyl–Dirac Geometry. Foundations of Physics 32, 945–961 (2002). https://doi.org/10.1023/A:1016063430245

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016063430245

Navigation