Skip to main content
Log in

Exchange Degeneracy of Relativistic Two-Particle Quantum States

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The phenomenon of exchange degeneracy of 2-particle quantum states is studied in detail within the framework of Relativistic Schrödinger Theory (RST). In conventional quantum theory this kind of degeneracy refers to the circumstance that, under neglection of the interparticle interactions, symmetric and anti-symmetric 2-particle states have identical energy eigenvalues. However the analogous effect of RST degeneracy is rather related to the emergence of two types of mixtures (positive and negative) in connection with the vanishing or non-vanishing of certain components of the Hamiltonian (“exchange fields”). As a consequence, there arise two subcases of RST degeneracy: (i) mixture degeneracy through neglection of the exchange fields and (ii) exchange degeneracy through neglection of the mixture character of matter. The latter RST exchange degeneracy consists in the fact that the RST dynamics admits a certain set of pure-state solutions, as borderline case between positive and negative mixtures, and all these different solutions are generating the same physical situation, e.g., concerning mass eigenvalues and physical densities (of current and energy-momentum). The general results are exemplified by considering the 2-particle states for (scalar) Helium. Analogously as the conventional exchange degeneracy is broken (ortho- and para-Helium) by taking into account the interparticle interactions (e.g., Coulomb forces), the RST degeneracy is broken by simultaneously taking into account the mixture character of matter together with non-zero exchange fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. Pauli, Z. Phys. 31, 765 (1925), reprinted in Ref. 2.

    Google Scholar 

  2. I. Duck and E. C. G. Sudarshan, Pauli and the Spin-Statistics Theorem (World Scientific, 1998).

  3. L. E. Ballentine, Quantum Mechanics (World Scientific, 1998).

  4. T. Sudberry, Nature 348, 193 (1990).

    Google Scholar 

  5. S. Rupp and M. Sorg, Int. J. Theor. Phys. 40, 1817 (2001).

    Google Scholar 

  6. S. Rupp and M. Sorg, Phys. Rev. A 63, 022112 (2001).

    Google Scholar 

  7. D. I. Blochincev, Quantum Mechanics (Reidel Dordrecht, 1964).

  8. S. Gasiorowicz, Quantum Physics (Wiley, 1974).

  9. A. Böhm, Quantum Mechanics (Springer, 1979).

  10. Y. Ohnuki and S. Kamefuchi, Quantum Field Theory and Parastatistics (Springer, 1982).

  11. M. D. Girardeau, Phys. Rev. B 139, 500 (1965).

    Google Scholar 

  12. J. W. Gibbs, Elementary Principles in Statistical Mechanics (Dover, 1960).

  13. J. M. Leinaas and J. Myrheim, Nuovo Cimento B 37, 1 (1977).

    Google Scholar 

  14. F. Wilczek, Fractional Statistics and Anyon Superconductivity (World Scientific, 1990).

  15. R. W. Childers, Phys. Rev. D 26, 2902 (1982).

    Google Scholar 

  16. J. Sucher, Phys. Rev. Lett. 55, 1033 (1985).

    Google Scholar 

  17. J. Bijtebier and J. Broekaert, Nuovo Cimento A 105, 351 (1992).

    Google Scholar 

  18. F. Gross, Phys. Rev. C 26, 2203 (1982).

    Google Scholar 

  19. M. Sorg, Nuovo Cimento B 112, 23 (1997).

    Google Scholar 

  20. M. Sorg, J. Phys. A 30, 5517 (1997).

    Google Scholar 

  21. M. Mattes and M. Sorg, J. Phys. A 32, 4761 (1999).

    Google Scholar 

  22. W. Heisenberg, The Physical Principles of the Quantum Theory (Dover, 1930).

  23. U. Ochs and M. Sorg, Gen. Rel. Grav. 28, 1177 (1996).

    Google Scholar 

  24. T. Sigg and M. Sorg, Gen. Pel. Grav. 29, 1557 (1997).

    Google Scholar 

  25. M. Mattes and M. Sorg, J. Math. Phys. 40, 71 (1999).

    Google Scholar 

  26. M. Mattes, S. Rupp, and M. Sorg, Can. J. Phys. 79, 879 (2001).

    Google Scholar 

  27. J. A. Wheeler and W. H. Zurek, eds., Quantum Theory and Measurement (Princeton University Press, 1983), p. 58.

  28. L. F. Abbott and S. Y. Pi, Inflationary Cosmology (World Scientific, 1986).

  29. E. W. Kolb and M. S. Turner, The Early Universe (Addison-Wesley, 1990).

  30. M. Mattes, U. Ochs, and M. Sorg, Int. J. Theor. Phys. 35, 155 (1996).

    Google Scholar 

  31. W. Greiner, Relativistic Quantum Mechanics (Springer, 2000).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rupp, S., Hunzinger, S. & Sorg, M. Exchange Degeneracy of Relativistic Two-Particle Quantum States. Foundations of Physics 32, 705–750 (2002). https://doi.org/10.1023/A:1016004909327

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016004909327

Navigation