Skip to main content
Log in

Involutive Distributions, Invariant Manifolds, and Defining Equations

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We introduce the notion of an invariant solution relative to an involutive distribution. We give sufficient conditions for existence of such a solution to a system of differential equations. In the case of an evolution system of partial differential equations we describe how to construct auxiliary equations for functions determining differential constraints compatible with the original system. Using this theorem, we introduce linear and quasilinear defining equations which enable us to find some classes of involutive distributions, nonclassical symmetries, and differential constraints. We present examples of reductions and exact solutions to some partial differential equations stemming from applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ovsyannikov L. V., Group Analysis of Differential Equations [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  2. Ibragimov N. Kh., Transformation Groups in Mathematical Physics [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  3. Fushichych W. and Nikitin A., Symmetries of Maxwell's Equations, Reidel, Dordrecht (1987).

    Google Scholar 

  4. Andreev V. K., Kaptsov O. V., Pukhnachov V. V., and Rodionov A. A., Application of Group-Theoretic Methods to Hydrodynamics [in Russian], Nauka, Novosibirsk (1994).

    Google Scholar 

  5. Ovsyannikov L. V., “The SUBMODELS program. Gas dynamics,” Prikl. Mat. Mekh., 58, No. 4, 30–55 (1994).

    Google Scholar 

  6. Bluman G. W. and Cole J. D., “The general similarity solution of the heat equation,” J. Math. Mech., 18, 1025–1042 (1969).

    Google Scholar 

  7. Ames W. F., Nonlinear Partial Differential Equations in Engineering, Academic Press, New York (1972).

    Google Scholar 

  8. Kaptsov O. V., “Linear defining equations for differential constraints,” Mat. Sb., 189, No. 12, 103–118 (1998).

    Google Scholar 

  9. Ëlkin V. I., Reduction of Nonlinear Control Systems. Differential Geometric Approach [in Russian], Nauka, Moscow (1997).

    Google Scholar 

  10. Smirnov V. I., A Course in Higher Mathematics. Vol. 4 [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  11. Finikov S. P., Cartan's Method of Exterior Forms [in Russian], GIFML, Moscow (1948).

    Google Scholar 

  12. Aristov S. N., “Periodic and localized exact solutions to the equation h t = Δ log h,” Prikl. Mekh. Tekhn. Fiz., 40, No. 1, 22–26 (1999).

    Google Scholar 

  13. Pukhnachov V. V., “Multidimensional exact solutions of a nonlinear diffusion equation,” Prikl. Mekh. Tekhn. Fiz., 36, No. 2, 23–31 (1995).

    Google Scholar 

  14. Dorodnitsyn V. A., Knyazeva I. V., and Svirshchevskii S. R., “Group properties of the heat equation with a source in two-dimensional and three-dimensional cases,” Differentsial′nye Uravneniya, 19, No. 7, 1215–1223 (1983).

    Google Scholar 

  15. Galaktionov V. A., “Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities,” Proc. Roy. Soc. Edinburgh Sect. A, 125A, No. 2, 225–246 (1995).

    Google Scholar 

  16. Rudykh G. A. and Semënov È. I., “Existence and construction of anisotropic solutions to the multidimensional equation of nonlinear diffusion. II,” Sibirsk. Mat. Zh., 42, No. 1, 176–195 (2001).

    Google Scholar 

  17. Olver P. J., Applications of Lie Groups to Differential Equations [Russian translation], Mir, Moscow (1989).

    Google Scholar 

  18. Arrigo D. J., Broadbridge P., and Hill J. M., “Nonclassical symmetry solutions and the methods of Bluman-Cole and Clarkson-Kruskal,” J. Math. Phys., 34, No. 10, 4692–4703 (1993).

    Google Scholar 

  19. Olver P. J., “Direct reduction and differential constraints,” Proc. Roy. Soc. London Sect. A, 444, 509–523 (1994).

    Google Scholar 

  20. Gibbons J. and Tsarev S. P., “Conformal maps and reductions of the Benney equations,” Phys. Lett. A, 258, No. 4–6, 263–271 (1999).

    Google Scholar 

  21. Dodd R. K., Eilbeck J. C., Gibbon J. D., and Morris H. C., Solitons and Nonlinear Wave Equations [Russian translation], Mir, Moscow (1988).

    Google Scholar 

  22. Kim K. Y., Reid R. O., and Whitaker R. E., “On an open radiational boundary condition for weakly dispersive tsunami waves,” J. Comput. Phys., 76, No. 2, 327–348 (1988).

    Google Scholar 

  23. Galaktionov V. A. and Posashkov S. A., “Examples of nonsymmetric extinction and blow-up for quasilinear heat equations,” Differential Integral Equations, 8, No. 1, 87–103 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaptsov, O.V. Involutive Distributions, Invariant Manifolds, and Defining Equations. Siberian Mathematical Journal 43, 428–438 (2002). https://doi.org/10.1023/A:1015403300242

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015403300242

Navigation