Skip to main content
Log in

Local Primitive Causality and the Common Cause Principle in Quantum Field Theory

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

If \(\mathcal{A}\)(V) is a net of local von Neumann algebras satisfying standard axioms of algebraic relativistic quantum field theory and V 1 and V 2 are spacelike separated spacetime regions, then the system (\(\mathcal{A}\)(V 1 ), \(\mathcal{A}\)(V 2 ), φ) is said to satisfy the Weak Reichenbach's Common Cause Principle iff for every pair of projections A∈\(\mathcal{A}\)(V 1 ), B∈\(\mathcal{A}\)(V 2 ) correlated in the normal state φ there exists a projection C belonging to a von Neumann algebra associated with a spacetime region V contained in the union of the backward light cones of V 1 and V 2 and disjoint from both V 1 and V 2 , a projection having the properties of a Reichenbachian common cause of the correlation between A and B. It is shown that if the net has the local primitive causality property then every local system (\(\mathcal{A}\)(V 1 ), \(\mathcal{A}\)(V 2 ), φ) with a locally normal and locally faithful state φ and suitable bounded V 1 and V 2 satisfies the Weak Reichenbach's Common Cause Principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. A. Akemann, and J. Anderson, “Lyapunov theorem for operator algebras,” Memoirs Amer. Math. Soc., No. 458 (1991).

  2. H.-J. Borchers, “On the vacuum state in quantum field theory II,” Commun. Math. Phys. 1, 57–79 (1965).

    Google Scholar 

  3. D. Buchholz, C. D'Antoni, and K. Fredenhagen, “The universal structure of local algebras,” Commun. Math. Phys. 111, 123–135 (1987).

    Google Scholar 

  4. D. Buchholz, and R. Verch, ‘Scaling algebras and renormalization group in algebraic quantum field theory,’ Rev. Math. Phys. 7, 1195–1239 (1996).

    Google Scholar 

  5. J. Butterfield, A space-time approach to the Bell inequality, in Philosophical Consequences of Quantum Theory, J. Cushing and E. McMullin, eds. (University of Notre Dame Press, Notre Dame, Indiana, 1989), pp. 114–144.

    Google Scholar 

  6. B. S. Cirel'son, Quantum generalizations of Bell's inequalities, Lett. Math. Phys. 4, 93–100 (1980).

    Google Scholar 

  7. M. Florig and S. J. Summers, “On the statistical independence of algebras of observables,” J. Math. Phys. 38, 1318–1328 (1997).

    Google Scholar 

  8. B. C. van Fraassen, “The Charybdis of realism: Epistemological implications of Bell's inequalities,” Synthese 52, 25–38 (1982).

    Google Scholar 

  9. K. Fredenhagen, “On the modular structure of local algebras of observables,” Commun. Math. Phys. 97, 79–89 (1985).

    Google Scholar 

  10. W. D. Garber, “The connexion of duality and causality properties for generalized free fields,” Commun. Math. Phys. 42, 195–208 (1975).

    Google Scholar 

  11. B. Gyenis and M. Rédei, “Reichenbachian common cause closed event structures,” in preparation.

  12. R. Haag, Local Quantum Physics (Springer-Verlag, Berlin, 1992).

    Google Scholar 

  13. R. Haag and B. Schroer, “Postulates of quantum field theory,” J. Math. Phys. 3, 248–256 (1962).

    Google Scholar 

  14. H. Halvorson and R. Clifton, “Generic Bell correlation between arbitrary local algebras in quantum field theory,” J. Math. Phys. 41, 1711–1717 (2000).

    Google Scholar 

  15. J. Hamhalter, ‘Statistical independence of operator algebras,’ Ann. Inst. Henri Poincaré— Phys. Théor. 67, 447–462 (1997).

    Google Scholar 

  16. G. Hofer-Szabó, “The formal existence and uniqueness of the Reichenbachian common cause on Hilbert lattices,” Int. J. Theor. Phys. 36, 1973–1980 (1997).

    Google Scholar 

  17. G. Hofer-Szabó, “Reichenbach's common cause definition on Hilbert lattices,” Int. J. Theor. Phys. 37, 435–443 (1998).

    Google Scholar 

  18. G. Hofer-Szabó, M. Rédei, and L. E. Szabó, “On Reichenbach's Common Cause Principle and Reichenbach's notion of common cause,” Brit. J. Phil. Sci. 50, 377–399 (1999).

    Google Scholar 

  19. G. Hofer-Szabó, M. Rédei, and L. E. Szabó, “Common cause completability of classical and quantum probability spaces,” Int. J. Theor. Phys. 39, 913–919 (2000).

    Google Scholar 

  20. S. S. Horuzhy, Introduction to Algebraic Quantum Field Theory (Kluwer Academic, Dordrecht, 1990).

    Google Scholar 

  21. R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vols. I and II (Academic Press, Orlando, 1986).

    Google Scholar 

  22. H. Neumann and R. Werner, “Causality between preparation and registration processes in relativistic quantum theory,” Int. J. Theor. Phys. 22, 781–802 (1983).

    Google Scholar 

  23. M. Rédei, “Logically independent von Neumann lattices,” Int. J. Theor. Phys. 34, 1711–1718 (1995).

    Google Scholar 

  24. M. Rédei, “Logical independence in quantum logic,” Found. Phys. 25, 411–422 (1995).

    Google Scholar 

  25. M. Rédei, “Reichenbach's common cause principle and quantum field theory,” Found. Phys. 27, 1309–1321 (1997).

    Google Scholar 

  26. M. Rédei, Quantum Logic in Algebraic Approach (Kluwer Academic, Dordrecht, 1998).

    Google Scholar 

  27. H. Reichenbach, The Direction of Time (University of California Press, Los Angeles, 1956).

    Google Scholar 

  28. H.-J. Roos, “Independence of local algebras in quantum field theory,” Commun. Math. Phys. 16, 238–246 (1970).

    Google Scholar 

  29. W. C. Salmon, Scientific Explanation and the Causal Structure of the World (Princeton University Press, Princeton, 1984).

    Google Scholar 

  30. S. J. Summers, “On the independence of local algebras in quantum field theory,” Rev. Math. Phys. 2, 201–247 (1990).

    Google Scholar 

  31. S. J. Summers and R. Werner, “The vacuum violates Bell's inequalities,” Phys. Lett. A 110, 257–279 (1985).

    Google Scholar 

  32. S. J. Summers and R. Werner, “Bell's inequalities and quantum field theory. I. General setting,” J. Math. Phys. 28, 2440–2447 (1987).

    Google Scholar 

  33. S. J. Summers and R. Werner, “Maximal violation of Bell's inequalities is generic in quantum field theory,” Commun. Math. Phys. 110, 247–259 (1987).

    Google Scholar 

  34. S. J. Summers and R. Werner, “Maximal violation of Bell's inequalities for algebras of observables in tangent spacetime regions,” Ann. Inst. Henri Poincaré—Phys. Théor. 49, 215–243 (1988).

    Google Scholar 

  35. L. J. Thomas and E. H. Wichmann, “On the causal structure of Minkowski spacetime,” J. Math. Phys. 38, 5044–5086 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rédei, M., Summers, S.J. Local Primitive Causality and the Common Cause Principle in Quantum Field Theory. Foundations of Physics 32, 335–355 (2002). https://doi.org/10.1023/A:1014869211488

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014869211488

Navigation