Skip to main content
Log in

Deduction, Ordering, and Operations in Quantum Logic

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We show that in quantum logic of closed subspaces of Hilbert space one cannot substitute quantum operations for classical (standard Hilbert space) ones and treat them as primitive operations. We consider two possible ways of such a substitution and arrive at operation algebras that are not lattices what proves the claim. We devise algorithms and programs which write down any two-variable expression in an orthomodular lattice by means of classical and quantum operations in an identical form. Our results show that lattice structure and classical operations uniquely determine quantum logic underlying Hilbert space. As a consequence of our result, recent proposals for a deduction theorem with quantum operations in an orthomodular lattice as well as a, substitution of quantum operations for the usual standard Hilbert space ones in quantum logic prove to be misleading. Quantum computer quantum logic is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. Christianson, P. L. Knight, and T. Beth, Implementations of quantum logic, Philos. Trans. Roy. Soc. London Ser. A 356(1743), 1823–1838 (1998).

    Google Scholar 

  2. G. W. Mackey, The Mathematical Foundations of Quantum Mechanics (Benjamin, New York, 1963).

    Google Scholar 

  3. V. S. Varadarajan, Geometry of Quantum Theory, Vols. 1 and 2 (Wiley, New York, 1968/1970).

    Google Scholar 

  4. H. A. Keller, Ein nicht-klassischer Hilbertscher Raum, Math. Z. 172, 41–49 (1980).

    Google Scholar 

  5. B. M. Boghosian and W. Taylor, Simulating quantum mechanics on a quantum computer, Phys. D 120, 30–42 (1998); http://xxx.lanl.gov/abs/quant-ph/9701019.

    Google Scholar 

  6. R. Godowski, Varieties of orthomodular lattices with a strongly full set of state, Demonstratio Math. 14, 725–733 (1981).

    Google Scholar 

  7. R. Godowski and R. Greechie, Some equations related to the states on orthomodular lattices, Demonstratio Math. 17, 241–250 (1984).

    Google Scholar 

  8. R. Mayet, Equational bases for some varieties of orthomodular lattices related to states, Algebra Universalis 23, 167–195 (1986).

    Google Scholar 

  9. N. D. Megill and M. Pavičić, Equations, states, and lattices of infinite-dimensional Hilbert space, Internat. J. Theoret. Phys. 39, 2349–2391 (2000); http://xxx.lanl.gov/ abs/quant-ph/0009038.

    Google Scholar 

  10. M. L. Dalla Chiara, Quantum logic, in Hand-book of Philosophical Logic, Vol. III, D. Gabbay and F. Guentliner, eds. (Reidel, Dordrecht, 1986), pp. 427–469.

    Google Scholar 

  11. M. L. Dalla Chiara and R. Giuntini, Quantum logic, http://xxx.lanl.gov/abs/quant-ph/ 0101028 (2001).

  12. P. F. Gibbins, Particles and Paradoxes: The Limits of Quantum Logics (Cambridge University Press, Cambridge, 1987).

    Google Scholar 

  13. M. Jammer, The Philosophy of Quantum Mechanics. The Interpretations of Quantum Mechanics in Historical Perspective (Wiley, New York, 1974).

    Google Scholar 

  14. G. Kalmbach, Orthomodular Lattices (Academic, London, 1983).

    Google Scholar 

  15. P. Mittelstaedt, Quantum Logic (Synthese Library, Vol. 18) (Reidel, London, 1978).

    Google Scholar 

  16. C. Piron, Foundations of Quantum Physics (Benjamin, Reading, Massachusetts, 1976).

    Google Scholar 

  17. G. T. Rüttimann, Logikkalku´le der Quantenphysik. Eine Abhandlung zur Ermittlung der formal-logischen Systeme, die der nicht-relativistischen Quantentheorie zugrundeliegen (Duncker &;; Humblot, Berlin, 1977).

    Google Scholar 

  18. M. Pavičić and N. D. Megill, “Non-orthomodular models for both standard quantum logic and standard classical logic: Repercussions for quantum computers,” Helv. Phys. Acta 72, 189–210 (1999); http://xxx.lanl.gov/abs/quart-ph/9906101.

    Google Scholar 

  19. N. D. Megill and M. Pavičić, “Orthomodular lattices and a quantum algebra,” Internat. J. Theoret. Phys. 40, 1387–1410 (2001); http://xxx.lanl.gov/abs/quant-ph/0103135.

    Google Scholar 

  20. P. D. Finch, Quantum logic as an implication algebra, Bull. Austral. Math. Soc. 2, 101–106 (1970).

    Google Scholar 

  21. L. Román and B. Rumbos, Quantum logic revisited, Found. Phys. 21, 793–734 (1991).

    Google Scholar 

  22. L. Román and R. E. Zuazua, Quantum implication, Internat. J. Theoret. Phys. 38, 793–797 (1999).

    Google Scholar 

  23. J. Malinowski, The deduction theorem for quantum logic—some negative results, J. Symbolic Logic 55, 615–625, 1990.

    Google Scholar 

  24. B. D'Hooghe and J. Pykacz, On some new operations on orthomodular lattices, Internat. J. Theoret. Phys. 39, 641–652 (2000).

    Google Scholar 

  25. H. Dishkant, The first-order predicate calculus based on the minimal logic of quantum mechanics, Rep. Math. Logic 3, 9–18 (1974).

    Google Scholar 

  26. G. N. Georgacarakos, Equationally definable implication algebras for orthomodular lattice, Stud. Logica 39, 5–18 (1980).

    Google Scholar 

  27. G. M. Hardegree, Material implication in orthomodular (and Boolean) lattice, Notre Dame J. Formal Logic 22, 163–182 (1981).

    Google Scholar 

  28. M. Pavičić and N. D. Megill, Quantum and classical implication algebras with primitive implications, Internat. J. Theoret. Phys. 37, 2091–2098 (1998).

    Google Scholar 

  29. L. Beran, Orthomodular Lattices; Algebraic Approach (Reidel, Dordrecht, 1985).

    Google Scholar 

  30. M. Pavičić, Minimal quantum logic with merged implications, Internat. J. Theoret. Phys. 26, 845–852 (1987).

    Google Scholar 

  31. R. I. Goldblatt, Semantic analysis of orthologic, J. Philos. Logic 3, 19–35 (1974).

    Google Scholar 

  32. M. Navara, On generating finite orthomodular sublattices, Tatra Mt. Math. Publ. 10, 109–117 (1997).

    Google Scholar 

  33. J. C. Abbott, Orthoimplication algebra, Stud. Logica, 35, 173–177 (1976).

    Google Scholar 

  34. B. D. McKay, N. D. Megill, and M. Pavičić, Algorithms for Greechie diagrams, Internat. J. Theoret. Phys. 39, 2393–2417 (2000); httl)://xxx.lanl.gov/abs/quant-ph/0009039.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Megill, N.D., Pavičić, M. Deduction, Ordering, and Operations in Quantum Logic. Foundations of Physics 32, 357–378 (2002). https://doi.org/10.1023/A:1014857228326

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014857228326

Navigation