Advertisement

Siberian Mathematical Journal

, Volume 43, Issue 2, pp 223–234 | Cite as

Stability of Mappings with Bounded Distortion on the Heisenberg Group

  • N. S. Dairbekov
Article

Abstract

A stability theorem is proved for mappings with bounded distortion over John domains in the Heisenberg group furnished with the Carnot–Caratheodory metric.

Keywords

Heisenberg Group Stability Theorem John Domain Bounded Distortion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reshetnyak Yu. G., Stability Theorems in Geometry and Analysis [in Russian], Sobolev Inst. Mat., Novosibirsk (1996).Google Scholar
  2. 2.
    Mostow G. D., Strong Rigidity of Locally Symmetric Spaces, Princeton Univ. Press, Princeton (1973). (Annals of Math. Studies; No. 78.)Google Scholar
  3. 3.
    Pansu P., “Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un,” Ann. Math. (2), 129, No. 1, 1-60 (1989).Google Scholar
  4. 4.
    Korányi A. and Reimann H. M., “Quasiconformal mappings on the Heisenberg group,” Invent. Math., 80, 309-338 (1985).Google Scholar
  5. 5.
    Korányi A. and Reimann H. M., “Foundations for the theory of quasiconformal mappings on the Heisenberg group,” Adv. Math., 111, No. 1, 1-87 (1995).Google Scholar
  6. 6.
    Heinonen J. and Holopainen I., “Quasiregular maps on Carnot groups,” J. Geom. Anal., 7, No. 1, 109-148 (1997).Google Scholar
  7. 7.
    Capogna L., “Regularity of quasi-linear equations in the Heisenberg group,” Comm. Pure Appl. Math., 50, 867-889 (1997).Google Scholar
  8. 8.
    Capogna L., “Regularity for quasilinear equations and 1-quasiconformal maps in Carnot groups,” Math. Ann., 313, No. 2, 263-295 (1999).Google Scholar
  9. 9.
    Dairbekov N. S., “Mappings with bounded distortion on Heisenberg groups,” Sibirsk. Mat. Zh., 41, No. 3, 567-590 (2000).Google Scholar
  10. 10.
    Dairbekov N. S., “Mappings with bounded distortion of two-step Carnot groups,” in: Proceedings on Geometry and Analysis [in Russian], Sobolev Inst. Mat., Novosibirsk, 2000, pp. 122-155.Google Scholar
  11. 11.
    Martio O. and Sarvas J., “Injectivity theorems in plane and space,” Ann. Acad. Sci. Fenn. Ser. AI Math., 4, No. 2, 383-401 (1978/79).Google Scholar
  12. 12.
    Rudin W., The Theory of Functions in the Unit Ball of ℂn [Russian translation], Mir, Moscow (1984).Google Scholar
  13. 13.
    Dairbekov N. S., “The limit theorem for mappings with bounded distortion on the Heisenberg group and the local homeomorphism theorem,” Sibirsk. Mat. Zh., 41, No. 2, 316-328 (2000).Google Scholar
  14. 14.
    Berdon A. F., The Geometry of Discrete Groups [Russian translation], Nauka, Moscow (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • N. S. Dairbekov
    • 1
  1. 1.Sobolev Institute of MathematicsNovosibirsk

Personalised recommendations