Advertisement

Siberian Mathematical Journal

, Volume 43, Issue 2, pp 212–214 | Cite as

The Hirota Method and Soliton Solutions to the Multidimensional Nonlinear Schrodinger Equation

  • A. V. Borzykh
Article

Abstract

Using the Hirota method, we obtain a 1-soliton solution to the (3+1)-dimensional nonlinear Schrodinger equation.

Keywords

Schrodinger Equation Nonlinear Schrodinger Equation Hirota Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ablowitz M. J. and Segur H., Solitons and the Inverse Scattering Transform, SIAM, Philadelphia (1980).Google Scholar
  2. 2.
    Shan-liang Lin and Wen-zheng Wang, “N-soliton solution of the modified nonlinear Schrödinger equation,” Phys. Rev. E., 48, No. 4, 3054-3058 (1993).Google Scholar
  3. 3.
    Strachan I. A. B., “Wave solutions of a (2+1)-dimensional generalization of the nonlinear Schrödinger equation,” Inverse Probl., 8, L21-L27 (1992).Google Scholar
  4. 4.
    Radha R. and Lakshmanan M., “Singularity structure analysis and bilinear form of a (2 +1)-dimensional generalization of the nonlinear Schrödinger equation,” Inverse Probl., 10, L29-L33 (1994).Google Scholar
  5. 5.
    Myrzakulov R. and Lakshmanan M., On the Geometrical and Gauge Equivalence of Certain (2 + 1)-Dimensional Integrable Spin Model and Nonlinear Schrödinger Equation, Almaty (1986).Google Scholar
  6. 6.
    Bliev N. K., Myrzakulov R., and Borzykh A. V., “Soliton solutions of a (2 + 1)-dimensional nonlinear Schrödinger equation,” Vestnik NAN RK, No. 1, 34-40 (1997).Google Scholar
  7. 7.
    Bliev N. K., Myrzakulov R., and Borzykh A. V., “A (2 + 1)-dimensional nonlinear Schrödinger equation of repulsing type: Higher hierarchies and n-soliton solutions,” Dokl. NAN RK, No. 3, 19-27 (1997).Google Scholar
  8. 8.
    Ablowitz M. J. and Segur H., Solitons and the Inverse Scattering Transform [Russian translation], Nauka, Moscow (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • A. V. Borzykh
    • 1
  1. 1.The Institute of MathematicsAlmaty

Personalised recommendations