Siberian Mathematical Journal

, Volume 43, Issue 2, pp 363–378 | Cite as

About One High-Order Linear Equation of Mixed Type



Linear Equation Mixed Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vragov V. N., Boundary Value Problems for Nonclassical Equations of Mathematical Physics [in Russian], Novosibirsk Univ., Novosibirsk (1983).Google Scholar
  2. 2.
    Egorov I. E. and Fëdorov V. E., Higher-Order Nonclassical Equations of Mathematical Physics [in Russian], Vychisl. Tsentr Sibirsk. Otdel. Ros. Akad. Nauk, Novosibirsk (1995).Google Scholar
  3. 3.
    Grisvard P., “Equations differentielles abstraites,” Ann. Sci. Norm. Super Pisa. (4)., 2, No. 3, 311-395 (1969).Google Scholar
  4. 4.
    Grisvard P., “Commutativite de deux foncteurs d'interpolation et applications,” J. Math. Pures Appl. Sér. IX, 45, No. 2, 143-206 (1966).Google Scholar
  5. 5.
    Da Prato G. and Grisvard P., “Sommes d'opérateurs linéaires et équations differentielles opérationnelles,” Pure Math. Appl. Sér. IX, 54, No. 3, 305-387 (1975).Google Scholar
  6. 6.
    Dubinskii Yu. A., “On certain operator-differential equations of arbitrary order,” Mat. Sb., 90, No. 1, 1-22 (1973).Google Scholar
  7. 7.
    Triebel H., Interpolation Theory; Function Spaces; Differential Operators [Russian translation], Mir, Moscow (1980).Google Scholar
  8. 8.
    Agmon S., “On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems,” Comm. Pure Appl. Math., 15, 119-147 (1962).Google Scholar
  9. 9.
    Pyatkov S. G., “Interpolation of weighted Sobolev spaces,” Siberian Adv. Math., 10, No. 3–4, 83-132 (2000).Google Scholar
  10. 10.
    Riesz F. and SzÖkefalvi-Nagy B., Lectures on Functional Analysis [Russian translation], Mir, Moscow (1979).Google Scholar
  11. 11.
    Chueshev A. V., “Estimates of the resolvent for ordinary differential operators of mixed type,” Mat. Trudy (Novosibirsk), 3, No. 1, 144-196 (2000).Google Scholar
  12. 12.
    Krein M. G., “The theory of selfadjoint extensions of semibounded Hermitian operators and its applications. II,” Mat. Sb., 21, 365-404 (1947).Google Scholar
  13. 13.
    Lions J.-L. and Magenes E., Inhomogeneous Boundary Value Problems and Their Applications [Russian translation], Mir, Moscow (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Personalised recommendations