Advertisement

Siberian Mathematical Journal

, Volume 43, Issue 2, pp 215–222 | Cite as

On Mean Periodic Functions on Complex Hyperbolic Spaces

  • Vit. V. Volchkov
Article
  • 15 Downloads

Abstract

We obtain a general solution to one class of convolution equations on the complex hyperbolic space.

Keywords

General Solution Periodic Function Hyperbolic Space Convolution Equation Complex Hyperbolic Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berenstein K. A. and Struppa D., “Complex analysis and equations in convolutions,” in: Contemporary Problems of Mathematics. Fundamental Trends [in Russian], VINITI, Moscow, 1989, 54, pp. 5-111. (Itogi Nauki i Tekhniki.)Google Scholar
  2. 2.
    Hörmander L., The Analysis of Linear Partial Differential Operators. Vol. 2 [Russian translation], Mir, Moscow (1986).Google Scholar
  3. 3.
    Napalkov V. V., Convolution Equations in Multidimensional Spaces [in Russian], Nauka, Moscow (1982).Google Scholar
  4. 4.
    Zalcman L., “A bibliographic survey of the Pompeiu problem,” in: Approximation by Solutions of Partial Differential Equations, Kluwer Acad. Publ., Dordrecht, 1992, pp. 185-194.Google Scholar
  5. 5.
    Volchkov V. V., “New mean value theorems for solving the Helmholtz equation,” Mat. Sb., 184, No. 7, 71-78 (1993).Google Scholar
  6. 6.
    Volchkov V. V., “A final version of the local two radii theorem,” Mat. Sb., 186, No. 6, 15-34 (1995).Google Scholar
  7. 7.
    Volchkov V. V., “Solution of the problem of support for some classes of functions,” Mat. Sb., 188, No. 9, 13-30 (1997).Google Scholar
  8. 8.
    Volchkov V. V., “Extremal problems for the Pompeiu sets,” Mat. Sb., 189, No. 7, 3-32 (1998).Google Scholar
  9. 9.
    Volchkov V. V., “New two radii theorems in the theory of harmonic functions,” Izv. Ros. Akad. Nauk Ser. Mat., 58, No. 1, 182-194 (1994).Google Scholar
  10. 10.
    Volchkov V. V., “Injectivity sets of the Radon transform over spheres,” Izv. Ros. Akad. Nauk Ser. Mat., 63, No. 3, 63-76 (1999).Google Scholar
  11. 11.
    Volchkov V. V., “On one problem of Zalcman and its generalizations,” Mat. Zametki, 53, No. 2, 30-36 (1993).Google Scholar
  12. 12.
    Volchkov V. V., “A final version of the mean value theorem in the theory of harmonic functions,” Mat. Zametki, 59, No. 3, 351-358 (1996).Google Scholar
  13. 13.
    Volchkov V. V., “Uniqueness theorems for some classes of functions with zero spherical means,” Mat. Zametki, 62, No. 1, 59-65 (1997).Google Scholar
  14. 14.
    Volchkov V. V., “Uniqueness theorems for lacunary multiple trigonometric series,” Mat. Zametki, 51, No. 6, 27-31 (1992).Google Scholar
  15. 15.
    Volchkov V. V., “New mean value theorems for polyanalytic functions,” Mat. Zametki, 56, No. 3, 20-28 (1994).Google Scholar
  16. 16.
    Volchkov V. V., “Mean value theorems for a class of polynomials,” Sibirsk. Mat. Zh., 35, No. 4, 737-745 (1994).Google Scholar
  17. 17.
    Volchkov V. V., “Morera type theorems on the unit disk,” Anal. Math., 20, 49-63 (1994).Google Scholar
  18. 18.
    Volchkov V. V., “Two radii theorems on constant curvature spaces,” Dokl. Akad. Nauk, 347, No. 3, 300-302 (1996).Google Scholar
  19. 19.
    Volchkov V. V., “The Pompeiu-type problems on manifolds,” Dokl. Akad. Nauk Ukrainy, No. 11, 9-12 (1993).Google Scholar
  20. 20.
    Ehrenpreis L., “A fundamental principle for systems of linear differential equations with constant coefficients, and some of its applications,” in: Proc. Intern. Symp. Linear Spaces, Pergamon, Oxford, 1961, pp. 161-174.Google Scholar
  21. 21.
    Ehrenpreis L., Fourier Analysis in Several Complex Variables, Wiley Interscience, New York (1970).Google Scholar
  22. 22.
    Palamodov V. P., Linear Differential Operators with Constant Coefficients [in Russian], Nauka, Moscow (1967).Google Scholar
  23. 23.
    Helgason S., Groups and Geometric Analysis [Russian translation], Mir, Moscow (1987).Google Scholar
  24. 24.
    Harchaoui M., “Inversion de la transformation de Pompeiu locale dans les espaces hyperboliques reel et comlete (cas de duex boules),” J. Anal. Math., 67, 1-37 (1995).Google Scholar
  25. 25.
    Rudin W., The Theory of Functions in the Unit Ball of ℂn [Russian translation], Mir, Moscow (1984).Google Scholar
  26. 26.
    Kobayashi Sh., Transformation Groups in Differential Geometry [Russian translation], Nauka, Moscow (1986).Google Scholar
  27. 27.
    Levin B. Ya., Distribution of Roots of Entire Functions [in Russian], Gostekhizdat, Moscow (1956).Google Scholar
  28. 28.
    Bateman H. and Erd´elyi A., Higher Transcendental Functions. Vol. 1 [Russian translation], Nauka, Moscow (1965).Google Scholar
  29. 29.
    Vilenkin N. Ya., Special Functions and Representation Theory of Groups [in Russian], Nauka, Moscow (1991).Google Scholar
  30. 30.
    Stein E. and Weiss G., Introduction to Harmonic Analysis on Euclidean Spaces [Russian translation], Mir, Moscow (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Vit. V. Volchkov
    • 1
  1. 1.Donetsk State UniversityDonetskthe Ukraine

Personalised recommendations