Siberian Mathematical Journal

, Volume 43, Issue 2, pp 195–211 | Cite as

On Composition Factors of Finite Groups Having the Same Set of Element Orders as the Group U3(q)

  • M. R. Aleeva


We study the composition factors of a finite nonsolvable group having the same set of order elements as the simple unitary group U3(q) for an odd q. We prove in particular that for q>5 the (only) nonabelian composition factor of such a group is isomorphic to U3(q).


Finite Group Unitary Group Composition Factor Element Order Nonsolvable Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Williams J. S., “Prime graph components of finite groups,” J. Algebra., 69, No. 2, 487-513 (1981).Google Scholar
  2. 2.
    Mazurov V. D., Xu M. C., and Cao H. P., “Recognition of finite simple groups L 3(2m) and U 3(2m) by their element orders,” Algebra i Logika, 39, No. 5, 567-586 (2000).Google Scholar
  3. 3.
    Kondrat' ev A. S., “Prime graph components of finite simple groups,” Mat. Sb., 180, No. 6, 787-797 (1989).Google Scholar
  4. 4.
    Mazurov V. D., “On recognition of finite groups by the set of their element orders,” Algebra i Logika, 37, No. 6, 651-666 (1998).Google Scholar
  5. 5.
    Aschbacher M., Finite Group Theory, Cambridge Univ. Press, Cambridge (1986).Google Scholar
  6. 6.
    Conway J. H., Curtis R. T., Norton S. P., Parker R. A., and Wilson R. A., An Atlas of Finite Groups, Clarendon Press, Oxford (1985).Google Scholar
  7. 7.
    Feit W., Characters of Finite Groups, W. A. Benjamin Inc., New York; Amsterdam (1967).Google Scholar
  8. 8.
    Busarkin V. M. and Gorchakov Yu. M., Decomposable Finite Groups [in Russian], Nauka, Moscow (1968).Google Scholar
  9. 9.
    Passman D. S., Permutation Groups, W. A. Benjamin Inc., New York (1968).Google Scholar
  10. 10.
    Harris M. E., “Finite groups containing an intrinsic 2-component of Chevalley type over a field of odd order,” Trans. Amer. Math. Soc., 272, No. 1, 1-65 (1982).Google Scholar
  11. 11.
    Mazurov V. D., “Characterization of finite groups by sets of all orders of the elements,” Algebra i Logika, 36, No. 1, 36-53 (1997).Google Scholar
  12. 12.
    Zsigmondi H., “Zur Theorie der Potenzreste,” Monatsh. Math. Phys., 3, 265-284 (1892).Google Scholar
  13. 13.
    Kondrat' ev A. S. and Mazurov V. D., “Recognition of alternating groups of prime degree from their element orders,” Sibirsk. Mat. Zh., 41, No. 2, 359-370 (2000).Google Scholar
  14. 14.
    Belonogov V. A., “Small interactions in the groups SL 3(q), SU 3(q), PSL 3(q), and PSU 3(q),” Trudy Inst. Mat. Mekh. Ural Otdel. Ross. Akad. Nauk, 5, 3-27 (1998).Google Scholar
  15. 15.
    Zavarnitsin A. V., Element Orders in Coverings of the Groups L n(q) and Recognition of the Alternating Group A16 [in Russian] [Preprint, No. 48], NII Diskret. Mat. Inform., Novosibirsk (2000).Google Scholar
  16. 16.
    Brandl R. and Shi W., “The characterization of PSL(2, q) by its element orders,” J. Algebra, 163, No. 1, 109-114 (1994).Google Scholar
  17. 17.
    Mitchell H. H., “Determination of the ordinary and modular ternary linear groups,” Trans. Amer. Math. Soc., 12, 207-272 (1911).Google Scholar
  18. 18.
    Huppert B., “Singer-Zyklen in klassischen Gruppen,” Math. Z., 117, No. 1-4, 141-150 (1970).Google Scholar
  19. 19.
    Gorenstein D. and Lyons R., The Local Structure of Finite Groups of Characteristic 2 Type, Amer. Math. Soc., Providence, RI (1983). (Mem. Amer. Math. Soc.; 276.)Google Scholar
  20. 20.
    Jansen C., Lux K., Parker R., and Wilson R., An Atlas of Brauer Characters, Clarendon Press, Oxford (1985).Google Scholar
  21. 21.
    Mazurov V. D., “Recognition of the finite simple groups S 4(q) by their set of element orders,” Algebra i Logika, 41 (2002) (to appear).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • M. R. Aleeva
    • 1
  1. 1.Institute of Mechanics and MathematicsEkaterinburg

Personalised recommendations