Skip to main content
Log in

Primary Matter Creation in a Weyl–Dirac Cosmological Model

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In the framework of an integrable Weyl–Dirac (W–D) theory a cosmological model is proposed. It describes a universe that began its expansion from a primary pre-Planckian geometric entity containing no matter. During the pre-Planckian period, from R 0 =5.58×10 −36 cm to RI=5.58×10 −34 cm, this embryonic universe has undergone a very rapid expansion and cosmic matter was created by geometry. At RI the universe was already filled with matter having the Planckian density ρ P and being in the state of prematter (P=−ρ), while the Weylian geometric elements were insignificant. This state is the Planckian egg that has served as the initial state of the singularity-free cosmological model(1) considered in the framework of Einstein's general theory of relativity. The W–D character of the geometry and the cosmological constant are significant in the pre-Planckian period during the matter creation. In the dust-dominated period a relic of the W–D geometry causes a global dark matter effect. In between the pre-Planckian and dust period one has Einstein's framework and Λ is negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. M. Israelit and N. Rosen, Astrophys.J. 342, 627 (1989); N. Rosen and M. Israelit, in Gravitation and Modern Cosmology, A. Zachichi et al., eds. (Plenum, New York, 1991), p. 151; M. Israelit and N. Rosen, Astrophys.Sp.Sc. 204, 317 (1993).

    Google Scholar 

  2. S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972).

    Google Scholar 

  3. S. P. Starkovich and F. I. Cooperstock, Astrophys.J. 398, 1 (1992).

    Google Scholar 

  4. S. S. Bayin, F. I. Cooperstock, and V. Faraoni, Astrophys.J. 428, 439 (1994).

    Google Scholar 

  5. H. J. Blome and W. Priester, Astron.Astrophys. 250, 43 (1991).

    Google Scholar 

  6. E. Rebhan, Astron.Astrophys. 353, 1 (2000).

    Google Scholar 

  7. W. Priester, J. Hoell, and H. J. Blome, Physik.Bl. 45, 51 (1989).

    Google Scholar 

  8. A. G. Riess et al., Astron.J. 116, 1009 (1998).

    Google Scholar 

  9. J. M. Overduin and F. I. Cooperstock, Phys.Rev.D 58, 0435506 (1998).

    Google Scholar 

  10. S. Perlmutter et al., Astrophys.J. 517, 565 (1999).

    Google Scholar 

  11. I. Zehavi and A. Dekel, Nature (London) 401, 252 (1999).

    Google Scholar 

  12. M. Israelit and N. Rosen, Found.Phys. 25, 763 (1995).

    Google Scholar 

  13. M. Israelit, Found.Phys. 29, 1303 (1999).

    Google Scholar 

  14. M. Israelit, in Proceedings of the Fourth Alexander Friedmann International Seminar on Gravitation and Cosmology, Yu. N. Gnedin et al., eds. (Campinas, SP, Brasil, 1999), p. 253.

    Google Scholar 

  15. H. Weyl, Ann.Phys.(Leipzig) 59, 101 (1919).

    Google Scholar 

  16. P. A. M. Dirac, Proc.R.Soc.Lond.A 333, 403 (1973).

    Google Scholar 

  17. N. Rosen, Found.Phys. 12, 213 (1982).

    Google Scholar 

  18. M. Israelit, The Weyl–Dirac Theory and Our Universe (Nova Science, Commack, New York 1999).

    Google Scholar 

  19. V. Canuto, P. J. Adams, S.-H. Hsieh, and E. Tsiang, Phys.Rev.D 16, 1643 (1977).

    Google Scholar 

  20. A. Einstein, Ann.Phys.(Leipzig) 49, 769 (1916).

    Google Scholar 

  21. M. Israelit and N. Rosen, Found.Phys. 22, 555 (1992); 24, 901 (1994). M. Israelit, Astrophys.Sp.Sc. 240, 331 (1996).

    Google Scholar 

  22. Ya. B. Zel'dovich and I. D. Novikov, Relativistic Astrophysics, Vol. 1, Chap. II (University of Chicago Press, Chicago, 1971).

    Google Scholar 

  23. V. Canuto, Ann.Rev.Astron.Astrophys. 13, 335 (1975); Mon.Not.R.Astr.Soc. 184, 721 (1978). V. Canuto, B. Datta, and G. Kalman, Astrophys.J. 221, 274 (1978). V. Canuto and S.-H. Hsieh, ibid. 224, 302 (1978).

    Google Scholar 

  24. C. van de Bruck and W. Priester, in Dark Matter in Astro Particle Physics (IOP, Bristol 1999), p. 181.

    Google Scholar 

  25. W. Priester, Private communication.

  26. M. Israelit and N. Rosen, Found.Phys. 26, 585 (1996).

    Google Scholar 

  27. E. B. Gliner, Soviet Phys.-JETP. 22, 378 (1966).

    Google Scholar 

  28. S. Samuel, Nucl.Phys.B 585, 715 (2000).

    Google Scholar 

  29. S. Tremaine, Phys.Today 45 (2), 28 (1992).

    Google Scholar 

  30. A. Tyson, Phys.Today 45 (6), 24 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Israelit, M. Primary Matter Creation in a Weyl–Dirac Cosmological Model. Foundations of Physics 32, 295–321 (2002). https://doi.org/10.1023/A:1014465327475

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014465327475

Navigation