Skip to main content
Log in

Application of Neural Networks to a Predictive Extended Corresponding States Model for Pure Halocarbon Thermodynamics

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The extended corresponding states (ECS) model has been extensively studied for representing the thermodynamic surface of pure fluids and mixtures in the a R(ρT) form, and the most advanced version is currently the one for hydrofluorocarbons, but the shape factors ϑ(ρT) and ϕ(ρT) have yet to be determined as analytical functions for the whole PρT surface of a pure fluid. For a sample of pure halocarbons, this work aims to solve the fundamental problem of determining the individual shape functions over the entire PρT domain through an innovative predictive procedure using a density model requiring only a single saturated liquid density input. An original algorithm using artificial neural networks enables the determination of the ϑ(ρT) and ϕ(ρT) functions from a priori knowledge of their functional forms. The proposed algorithm focuses on the determination of the residual Helmholtz energy a R(ρT) for each fluid, subsequently allowing any other thermodynamic residual function to be calculated through the first and second derivatives of temperature and density. For each fluid studied, the model has been validated for residual functions against the same functions coming from highly accurate dedicated equations of state. The prediction accuracies reach average absolute deviation values ranging from 0.3 to 7.8%, spanning from vapor and liquid regions to supercritical conditions, while the corresponding results of the conventional ECS method range from 0.54 to 20%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. M. Reed and K. E. Gubbins, Applied Statistical Mechanics (McGraw-Hill, New York, 1973).

    Google Scholar 

  2. J. S. Rowlinson and F. L. Swinton, Liquids and Liquid Mixtures (Butterworths, Oxford, 1982).

    Google Scholar 

  3. M. Huber and J. F. Ely, Int. J. Refrig. 17:18 (1994).

    Google Scholar 

  4. J. S. Rowlinson and I. D. Watson, Chem. Eng. Sci. 24:1565 (1969).

    Google Scholar 

  5. J. F. Ely, Adv. Cryog. Eng. 35:1511 (1990).

    Google Scholar 

  6. R. Schmidt and W. Wagner, Fluid Phase Equil. 19:175 (1985).

    Google Scholar 

  7. F. Rosenblatt, Psychol. Rev. 65:386 (1958).

    Google Scholar 

  8. J. L. McClelland and D. Rumelhart, Explorations in Parallel Distributed Processing, 2 vols. (MIT Press, Cambridge, MA, 1988).

    Google Scholar 

  9. A. Normandin, B. Grandjean, and J. Thibault, Ind. Eng. Chem. Res. 32:970 (1993).

    Google Scholar 

  10. C. Lombardi and A. Mazzola, Ann. Nucl. Energy 24:1373 (1997).

    Google Scholar 

  11. R. Kühne, R. U. Ebert, and G. Schüürmann, Chemosphere 34:671 (1997).

    Google Scholar 

  12. R. Sharma, D. Singhal, R. Ghosh and A. Dwivedi, Comput. Chem. Eng. 23:385 (1999).

    Google Scholar 

  13. J. Homer, S. C. Generalis, and J. H. Robson, Phys. Chem. Chem. Phys. 1:4075 (1999).

    Google Scholar 

  14. V. Kurkova, Neural Networks 5:501 (1992).

    Google Scholar 

  15. R. T. Jacobsen, S. G. Penoncello, and E. W. Lemmon, Fluid Phase Equil. 80:45 (1992).

    Google Scholar 

  16. S. G. Penoncello, R. T. Jacobsen, and E. W. Lemmon, Fluid Phase Equil. 80:57 (1992).

    Google Scholar 

  17. A. Kamei, S. W. Beyerlein, and E. W. Lemmon, Fluid Phase Equil. 80:71 (1992).

    Google Scholar 

  18. S. L. Outcalt and M. O. McLinden, Int. J. Thermophys. 16:79 (1995).

    Google Scholar 

  19. S. G. Penoncello, R. T. J acobsen, K. M. de Reuck, A. E. Elhassan, R. C. Williams, and E. W. Lemmon, Int. J. Thermophys. 16:781 (1995).

    Google Scholar 

  20. R. Tillner-Roth and H. D. Baehr, J. Phys. Chem. Ref. Data 23:657 (1994).

    Google Scholar 

  21. R. Tillner-Roth, Int. J Thermophys. 16:91 (1995).

    Google Scholar 

  22. R. Fletcher, Practical Methods of Optimization, 2nd ed. (Wiley, Chichester, UK, 1987).

    Google Scholar 

  23. M. Grigiante, G. Scalabrin, and S. Bobbo, Proc. 20th Int. Congr. Refrig., Sydney, Australia (1999).

  24. G. Cristofoli, M. Grigiante, and G. Scalabrin, Fluid Phase Equil. 170:23 (2000).

    Google Scholar 

  25. G. Scalabrin, M. Grigiante, G. Cristofoli, and L. Piazza, Int. J. Refrig., submitted for publication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scalabrin, G., Piazza, L. & Cristofoli, G. Application of Neural Networks to a Predictive Extended Corresponding States Model for Pure Halocarbon Thermodynamics. International Journal of Thermophysics 23, 57–75 (2002). https://doi.org/10.1023/A:1013992608159

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013992608159

Navigation