Skip to main content
Log in

Semiclassical Models for Virtual Antiparticle Pairs, the Unit of Charge e, and the QCD Coupling α s

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

New semiclassical models of virtual antiparticle pairs are used to compute the pair lifetimes, and good agreement with the Heisenberg lifetimes from quantum field theory (QFT) is found. The modeling method applies to both the electromagnetic and color forces. Evaluation of the action integral of potential field fluctuation for each interaction potential yields ≈ℏ/2 for both electromagnetic and color fluctuations, in agreement with QFT. Thus each model is a quantized semiclassical representation for such virtual antiparticle pairs, to good approximation. When the results of the new models and QFT are combined, formulae for e and α s (q) are derived in terms of only ℏ and c.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. Brau, “Bohr-Sommerfeld quantization and meson spectroscopy,” Phys. Rev. D 62, 014005 (2000).

    Google Scholar 

  2. J. J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley, Redwood City, California, 1967), p. 138. G. C. Wick, “Range of nuclear forces in Yukawa's theory,” Nature 142, 993 (1938). I. J. R. Aitchison, “Nothing's plenty, The vacuum in modern quantum field theory,” Contemp. Phys. 26(4), 333, in particular p. 369.

    Google Scholar 

  3. B. Hatfield, Quantum Field Theory of Point Particles and Strings (Addison-Wesley, Reading, Massachusetts, 1992), p. 407. P. W. Milonni, The Quantum Vacuum (Academic, San Diego, 1994), Chaps. 9 and 10.

    Google Scholar 

  4. E. P. Wigner, “On the time-energy uncertainty relation,” in Aspects in Quantum Theory, A. Salam and E. P. Wigner, eds. (Cambridge University Press, London, 1972). W. Greiner, “Opening remarks,” in Quantum Electrodynamics of Strong Fields (Plenum, New York, 1983), p. 6.

    Google Scholar 

  5. R. E. Langer, “On the connection formulas and the solutions of the wave equation,” Phys. Rev. 51, 669 (1938). H. C. von Baeyer, “Semiclassical quantization of the relativistic Kepler problem, ” Phys. Rev. D 12(10), 3086 (1975). B. Sheehy and H. C. von Baeyer, “Modified Bohr quantization of charmonium,” Am. J. Phys. 49(5), 429 (1981).

    Google Scholar 

  6. F. Gross, Relativistic Quantum Mechanics and Field Theory (Wiley Interscience, New York, 1993), p. 337. Also, see R. P. Feynman, “The reason for antiparticles,” in R. P. Feynman and S. Weinberg, Elementary Particles and the Laws of Physics (Cambridge University Press, Cambridge, 1987), p. 47.

    Google Scholar 

  7. V. B. Berestetski, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics (Pergamon, Oxford, 1982), p. 3.

    Google Scholar 

  8. E. C. G. Stückelberg, “La mécanique du point matériel en théorie de la relativité et en théorie des quanta,” Helv. Phys. Acta 15, 23 (1942).

    Google Scholar 

  9. J. P. Costella, B. H. J. McKellar, and A. A. Rawlinson, “Classical antiparticles,” Am. J. Phys. 65, 835 (1997).

    Google Scholar 

  10. M. A. Trump and W. C. Schieve, Classical Relativistic Many-Body Dynamics (Kluwer Academic, Dordrecht, 1999), p. 24.

    Google Scholar 

  11. A. Carati, “Pair production in classical electrodynamics,” Found. Phys. 28, 843 (1998).

  12. Cf. G. Baym, Lectures on Quantum Mechanics (Benjamin, New York, 1969), p. 518.

    Google Scholar 

  13. J. D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley, New York, 1975), p. 185.

    Google Scholar 

  14. J. J. Sakurai, op. cit., p. 140.

  15. For a review of positronium theory, see M. A. Stroscio, “Positronium: A review of the theory,” Phys. Reps. C22(5), 215 (1975).

    Google Scholar 

  16. J. D. Jackson, op. cit., pp. 553–555.

  17. P. W. Milonni, op. cit., p. 403.

  18. E.g., J. Huschilt, W. E. Baylis, D. Leiter, and G. Szamosi, “Numerical solutions to twobody problems in classical electrodynamics: straight-line motion with retarded fields and no radiation reaction,” Phys. Rev. D 7(10), 2844 (1973). J. C. Kasher, “Numerical solutions in classical relativistic electrodynamics: one-dimensional bound positronium,” J. Phys. A: Math. Gen 10(7), 1097 (1977).

    Google Scholar 

  19. J. J. Sakurai, op. cit., p. 118.

  20. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers, 2nd edn. (McGraw-Hill, New York, 1968), p. 974.

    Google Scholar 

  21. E. M. Purcell, Electricity and Magnetism (McGraw-Hill, New York, 1965), p. 365; J. D. Jackson, op. cit., p. 184.

    Google Scholar 

  22. See review by H. C. von Baeyer, op. cit.; also W. Dittrich and M. Reuter, Classical and Quantum Dynamics (Springer, Berlin, 1994).

  23. D. Derbes, “Feynman's derivation of the Schrödinger equation,” Am. J. Phys. 64(7), 881 (1996).

    Google Scholar 

  24. C. Lanczos, The Variational Principles of Mechanics, 4th edn. (Dover, New York, 1986), p. 321.

    Google Scholar 

  25. F. Gross, op. cit., p. 478.

  26. See review by W. Lucha, F. F. Schöberl, and D. Gromes, “Bound states of quarks,” Phys. Reps. 200(4), 127 (1991); in particular, p. 150.

    Google Scholar 

  27. D. B. Lichtenberg, The Standard Model Of Elementary Particles (Bibliopolis, Napoli, 1991), pp. 128–129.

    Google Scholar 

  28. S. Bethke, “Determination of the QCD coupling β,” J. Phys. G: Nucl. Part. Phys. 26, R27 (2000). F. Wilczek, “QCD made simple,” Phys. Today 53(8), 22 (2000).

    Google Scholar 

  29. K. G. Chetyrkin, B. A. Kniehl, and M. Steinhauser, “Strong coupling constant with flavor thresholds at four loops in the modified minimal-subtraction scheme,” Phys. Rev. Lett 79, 2184 (1997).

    Google Scholar 

  30. J. L. Richardson, “The heavy quark potential and the U, J/k systems,” Phys. Lett. 82B, 272 (1979).

    Google Scholar 

  31. S. Weinberg, The Quantum Theory of Fields III (Cambridge University Press, Cambridge, 1996), p. 152.

    Google Scholar 

  32. D. B. Lichtenberg, op. cit., p. 133.

  33. V. Fitch, in Encycl. of Phys., 2nd edn. (VCH Publishers, New York, 1991), p. 1357; in particular, p. 1360.

    Google Scholar 

  34. K. Rith and A. Shäfer, “The mystery of nucleon spin,” Sci. Am. 281, 58 (1999).

    Google Scholar 

  35. See T. Y. Cao, Conceptual Developments of 20th Century Field Theories (Cambridge University Press, Cambridge, 1998), p. 198. J. Schwinger, “Quantum electrodynamics I: A covariant formulation,” Phys. Rev. 74, 1439 (1948). J. Schwinger, “Quantum Electrodynamics II: Vacuum polarization and self energy,” Phys. Rev. 75, 651 (1949).

    Google Scholar 

  36. K. Gottfried and V. F. Weisskopf, Concepts of Particle Physics, Volume II (Oxford University Press, New York, 1986), p. 263.

    Google Scholar 

  37. B. Hatfield, op. cit., p. 409.

  38. G. Kane, The Particle Garden (Addison-Wesley, Reading, Massachusetts, 1995), p. 126.

    Google Scholar 

  39. N. A. Doughty, Lagrangian Interaction (Addison Wesley, Reading, Massachusetts, 1990), p. 24. J. A. Wheeler, in Battelle Rencontres: 1967 Lectures in Mathematics and Physics (Benjamin, New York, 1968), p. 269.

    Google Scholar 

  40. M. A. Oliver, “Classical electrodynamics of a point particle,” Found. Phys. 11, 61 (1998).

    Google Scholar 

  41. E.g., J. Barrow and F. Tipler, The Anthropic Principle (Oxford University Press, Oxford, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batchelor, D. Semiclassical Models for Virtual Antiparticle Pairs, the Unit of Charge e, and the QCD Coupling α s . Foundations of Physics 32, 51–76 (2002). https://doi.org/10.1023/A:1013848830547

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013848830547

Keywords

Navigation