Automation and Remote Control

, Volume 63, Issue 1, pp 14–24 | Cite as

Perturbations with Defective Spectra and Fractal Controllers

  • A. L. Bunich


Consideration was given to optimization of the stationary mode by variance of the controlled variable as applied to the class of discrete linear plants and perturbations with incomplete spectrum. A fractal (structurally iterative) controller with the number of iterations defined by the desired stabilization precision was proposed to solve the problem of design.


Mechanical Engineer Stationary Mode Control Variable System Theory Discrete Linear 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bunich, A.L., On Some Nonstandard Problems of Discrete System Design, Avtom.Telemekh., 2000, no. 6, pp. 114–123.Google Scholar
  2. 2.
    Fomin, V.N., Fradkov, A.L., and Yakubovich, V.A., Adaptivnoe upravlenie dinamicheskimi ob"ektami (Adaptive Control of Dynamic Plants), Moscow: Nauka, 1981.Google Scholar
  3. 3.
    Tsypkin, Ya.Z., Design of Robust-optimal Plant Control under Bounded Uncertainty, Avtom.Telemekh., 1992, no. 9, pp. 139–159.Google Scholar
  4. 4.
    Rozanov, Yu.A., Statsionarnye sluchainye protsessy (Stationary Random Processes), Moscow: Nauka, 1990.Google Scholar
  5. 5.
    Sz.-Nagy, B. and Foias, C., Analyse harmonique des opfierateurs de l'espace Hilbert, Paris: Masson & Cie, 1967. Translated under the title Garmonicheskii analiz operatorov v gil'bertovom prostranstve, Moscow: Mir, 1970.Google Scholar
  6. 6.
    Rudin, W., Functional Analysis, New York: McGraw-Hill, 1973. Translated under the title Funktsional'nyi analiz, Moscow: Mir, 1975.Google Scholar
  7. 7.
    Walsh, J.L., Interpolation and Approximation by Rational Functions in the Complex Domain, Providence: Am. Math. Soc., 1960, 2nd ed. Translated under the title Interpolyatsiya i approksimatsiya ratsional'nymi funktsiyami v kompleksnoi oblasti, Moscow: Inostrannaya Literatura, 1961.Google Scholar
  8. 8.
    Anderson, B.D. and Liu, Y., Controller Reduction: Concepts and Approaches, IEEE Trans.Autom.Control, 1989, vol. 34, pp. 802–812.Google Scholar
  9. 9.
    Vishnyakov, A.N. and Polyak, B.T., Design of Low-order Controllers of Discrete Control Systems under Nonrandom Perturbations, Avtom.Telemekh., 2000, no. 9, pp. 112–119.Google Scholar
  10. 10.
    Afanas'ev, V.N., Kolmanovskii, V.B., and Nosov, V.R., Matematicheskaya teoriya konstruirovaniya sistem upravleniya (Design of Control Systems: A Mathematical Theory), Moscow: Vysshaya Shkola, 1998.Google Scholar
  11. 11.
    Krasovskii, A.A., Fundamental Applied Science of Control as Exemplified by the Self-organizing Controllers: Historical Review and State-of-the-art, in Mezhd.konf.po probl.upravleniya.Sb.plenarnykh dokl. (Int. Conf. on Control. Plenary Papers), Moscow, 1999, pp. 4–23.Google Scholar
  12. 12.
    Doyl, J.C. and Stein, G., Multivariable Feedback Design: Concepts for a Classical Modern Synthesis, IEEE Trans.Autom.Control, 1981, vol. AC-26, pp. 4–16.Google Scholar
  13. 13.
    Teoriya avtomaticheskogo upravleniya (Automatic Control Theory), Shatalov, A.S., Ed., Moscow: Vysshaya Shkola, 1977.Google Scholar
  14. 14.
    Kanellakopoulos, I., Kokotovic, P.V., and Morse, A.S., A Toolkit for Nonlinear Feedback Design, Syst.Control Lett., 1992, vol. 18, pp. 83–92.Google Scholar
  15. 15.
    Kumar, R. and Moore, J.B., On Adaptive Minimum Variance Regulation for Nonminimum-Phase Plants, Automatica, 1983, vol. 19, no. 4, pp. 449–451.Google Scholar
  16. 16.
    Gunning, R. and Rossi, H., Analytic Functions of Several Complex Variables, Englewood Cliffs: Prentice Hall, 1965. Translated under the title Analiticheskie funktsii mnogikh kompleksnykh peremennykh, Moscow: Mir, 1969.Google Scholar
  17. 17.
    Tsypkin, Ya.Z. and Vishnyakov, A.N., Design of Discrete Control Systems of Nonminimum-Phase Delay Plants, Diff.Uravn., 1992, vol. 28, no. 11, pp. 2001–2006.Google Scholar
  18. 18.
    Hoffman, K., Banach Spaces of Analytic Functions, Englewood Cliffs: Prentice Hall, 1962. Translated under the title Banakhovy prostranstva analiticheskikh funktsii, Moscow: Inostrannaya Literatura, 1963.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2002

Authors and Affiliations

  • A. L. Bunich
    • 1
  1. 1.Trapeznikov Institute of Control SciencesRussian Academy of SciencesMoscowRussia

Personalised recommendations