Skip to main content
Log in

Spinc Structures and Scalar Curvature Estimates

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

In this note, we look at estimates for the scalar curvature κof a compact, connected Riemannian manifold Mwhich are related to spinc Dirac operators.We show that one may not enlarge a Kähler metric with positiveRicci curvature without making κ smaller somewhere on M.More generally, if f: NM is an area-nonincreasing map of a certain topological type,then the scalar curvature k of Ncannot be everywhere larger than κ ∘ f.If k ≥ κ ∘ f, then N is isometric to M × F, where F possesses a parallel untwisted spinor.

We also give explicit upper bounds for min κfor arbitrary Riemannian metrics on certainsubmanifolds of complex projective space.In certain cases, these estimates are sharp:we give examples where equality is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bär, C. and Bleecker, D.: The Dirac operator and the scalar curvature of continuously deformed algebraic varieties, in: Booss-Bavnbek, Bernhelm et al. (eds), Geometric Aspects of Partial Differential Equations, Contemp. Math. 242, Amer. Math. Soc., Providence, RI, 1998, pp. 3-24.

    Google Scholar 

  2. Besse, A. L.: Einstein Manifolds, Spinger-Verlag, Berlin, 1987.

    Google Scholar 

  3. Goette, S. and Semmelmann, U.: Scalar curvature estimates for compact symmetric spaces, Differential Geom. Appl., to appear.

  4. Gromov, M.: Positive curvature, macroscopic dimension, spectral gaps and higher signatures, in: S. Gindikin, J. Lepowski and R. L. Wilson (eds), Functional Analysis on the Eve of the 21st Century, Vol. II, Progr. Math. 132, Birkhäuser, Boston, 1996, pp. 1-213.

    Google Scholar 

  5. Gromov, M. and Lawson Jr., H. B.: The classification of simply-connected manifolds of positive scalar curvature, Ann. of Math. 111 (1980), 423-434.

    Google Scholar 

  6. Hano, J.: Einstein complete intersections in complex projective spaces, Math. Ann. 216 (1975), 197-208.

    Google Scholar 

  7. Hirzebruch, F.: Topological Methods in Algebraic Geometry, 3rd enlarged edn, Springer, New York, 1966.

    Google Scholar 

  8. Hitchin, N.: Harmonic spinors, Adv. Math. 14 (1974), 1-55.

    Google Scholar 

  9. Kazdan, J. L. and Warner, F. W.: Scalar curvature and conformal deformation of Riemannian structure, J. Differential Geom. 10 (1975), 113-134.

    Google Scholar 

  10. Kobayashi, S. and Ochiai, T.: Characterizations of complex projective spaces and hyperquadrics, J. Math. Kyoto Univ. 13 (1973), 31-47.

    Google Scholar 

  11. Kramer, W.: Der Dirac-Operator auf Faserungen, Dissertation, Bonner Mathematische Schriften 317, Universität Bonn, 1999.

  12. Lawson Jr., H. B. and Michelsohn, M.-L.: Spin Geometry, Princeton Univ. Press, Princeton, NJ, 1989.

    Google Scholar 

  13. Llarull, M.: Scalar curvature estimates for (n+4k)-dimensional manifolds, Differential Geom. Appl. 6 (1996), 321-326.

    Google Scholar 

  14. Llarull, M.: Sharp estimates and the Dirac operator, Math. Ann. 310 (1998), 55-71.

    Google Scholar 

  15. Min-Oo, M.: Scalar curvature rigidity of certain symmetric spaces, in: F. Lalonde (ed.), Geometry, Topology and Dynamics, Montreal, PQ, 1995, CRM Proc. Lecture Notes 15, Amer. Math. Soc., Providence, RI, 1998, pp. 127-136.

    Google Scholar 

  16. Moroianu, A.: Parallel and Killing spinors on Spinc manifolds, Comm. Math. Phys. 187 (1997), 417-427.

    Google Scholar 

  17. Ogiue, K.: Scalar curvature of complex submanifolds in complex projective spaces, J. Differential Geom. 5 (1971), 229-232.

    Google Scholar 

  18. Schrödinger, E.: Diracsches Elektron im Schwerefeld. I, Sitzungsber. Preuss. Akad. Wiss. 11 (1932), 105-128.

    Google Scholar 

  19. Stolz, S.: Simply connected manifolds of positive scalar curvature, Bull. Amer. Math. Soc. 23 (1990), 427-432.

    Google Scholar 

  20. Stolz, S.: Positive scalar curvature metrics-Existence and classification questions, in: Proc. of the ICM, Vol. I, ICM Zürich, 1994, S. D. Chatterji (ed.), Birkhäuser, Basel, 1995, pp. 625-636.

    Google Scholar 

  21. Tian, G.: On Kähler-Einstein metrics on certain manifolds with c 1 (M) > 0, Invent. Math. 89 (1987), 225-246.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goette, S., Semmelmann, U. Spinc Structures and Scalar Curvature Estimates. Annals of Global Analysis and Geometry 20, 301–324 (2001). https://doi.org/10.1023/A:1013035721335

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013035721335

Navigation