Skip to main content
Log in

The Tartar Equation for Homogenization of a Model of the Dynamics of Fine-Dispersion Mixtures

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We consider a mathematical model describing a nonstationary Stokes flow in a fine-dispersion mixture of viscous incompressible fluids with rapidly oscillating initial data. We perform homogenization of the model as the frequency of oscillations tends to infinity; this leads to the problem of finding effective coefficients of the averaged equations. To solve this problem, we propose and implement a method which bases on supplementing the averaged system with the Cauchy problem for the kinetic Tartar equation whose unique solution is the Tartar H-measure. Thereby we construct a correct closed model for describing the motion of a homogeneous mixture, because the effective coefficients of the averaged equations are uniquely expressed in terms of the H-measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antontsev S. N., Kazhikhov A. V., and Monakhov V. N., Boundary Value Problems of Inhomogeneous Fluid Mechanics [in Russian], Nauka, Novosibirsk (1983).

    Google Scholar 

  2. Temam R., Navier-Stokes Equations. Theory and Numerical Analysis [Russian translation], Mir, Moscow (1981).

    Google Scholar 

  3. Zhikov V. V., Kozlov S. M., and Olecnik O. A., Averaging of Differential Operators [in Russian], Fiz. Mat. Lit., Moscow (1993).

  4. Bakhvalov N. S. and Panasenko G. P., Averaging Processes in Periodic Media [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  5. Sanchez-Palencia E., Non-Homogeneous Media and Vibration Theory [Russian translation], Mir, Moscow (1984).

    Google Scholar 

  6. Allaire G., “Homogenization and two-scale convergence,” SIAM J. Math. Anal., 23, No. 6, 1482–1518 (1992).

    Google Scholar 

  7. Tartar L., “H-measures, a new approach for studying homogenisation oscillations and concentration effects in partial differential equations,” Proc. Roy. Soc. Edinburgh Sect. A, 115, No. 3/4, 193–230 (1990).

    Google Scholar 

  8. DiPerna R. J. and Lions P. L., “Ordinary differential equations, transport theory and Sobolev spaces,” Invent. Math., 98, 511–547 (1989).

    Google Scholar 

  9. Gérard P., “Microlocal defect measures,” Comm. Partial Differential Equations, 16, 1761–1794 (1991).

    Google Scholar 

  10. Sazhenkov S. A., “Solutions of the problem of motion of a viscous incompressible fluid with rapidly oscillating initial data,” Dinamika Sploshn. Sredy (Novosibirsk), No. 113, 123–134 (1998).

  11. Bourbaki N., Integration: Measures. Integration of Measures [Russian translation], Nauka, Moscow (1967).

    Google Scholar 

  12. Málek J., Nečas J., Rokyta M., and Ružička M., Weak and Measure-Valued Solutions to Evolutionary PDEs, Chapman and Hall, London (1996).

    Google Scholar 

  13. Sazhenkov S. A., “Cauchy problem for Tartar equation,” Proc. Roy. Soc. Edinburgh Sect. A (to appear).

  14. Sazhenkov S. A., “Generalized Lagrange coordinates in the case of a nonsmooth solenoidal velocity field,” Dinamika Sploshn. Sredy (Novosibirsk), No. 114, 74–77 (1999).

  15. Ladyzhenskaya O. A., Mathematical Problems of the Dynamics of a Viscous Incompressible Fluid [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  16. Sazhenkov S. A., “On averaging of multidimensional parabolic differential operators in hydrodynamics,” Izv. Altačsk. Univ., Barnaul, 2001, No. 1, pp. 43–47. (On-line ISSN 1561–9451, http://tbs.dcn-asu.ru/news/.)

  17. Zhikov V. V., Kozlov S. M., and Oleľnik O. A., “On G-convergence of parabolic operators,” Uspekhi Mat. Nauk, 36, No. 1, 11–58 (1981).

    Google Scholar 

  18. Reshetnyak Yu. G., Stability Theorems in Geometry and Analysis [in Russian], Nauka, Novosibirsk (1982).

    Google Scholar 

  19. Murat F., “H-convergence,” in: Séminaire d'Analyse Fonctionnelle et Numérique de l'Université d'Alger, 1978, Vol. 77–78, p. 34.

    Google Scholar 

  20. Stein E. M., Singular Integrals and Differentiability Properties of Functions [Russian translation], Mir, Moscow (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sazhenkov, S.A. The Tartar Equation for Homogenization of a Model of the Dynamics of Fine-Dispersion Mixtures. Siberian Mathematical Journal 42, 1142–1155 (2001). https://doi.org/10.1023/A:1012804929542

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012804929542

Keywords

Navigation