Skip to main content
Log in

Quantum Theory Without Hilbert Spaces

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Quantum theory does not only predict probabilities, but also relative phases for any experiment, that involves measurements of an ensemble of systems at different moments of time. We argue, that any operational formulation of quantum theory needs an algebra of observables and an object that incorporates the information about relative phases and probabilities. The latter is the (de)coherence functional, introduced by the consistent histories approach to quantum theory. The acceptance of relative phases as a primitive ingredient of any quantum theory, liberates us from the need to use a Hilbert space and non-commutative observables. It is shown, that quantum phenomena are adequately described by a theory of relative phases and non-additive probabilities on the classical phase space. The only difference lies on the type of observables that correspond to sharp measurements. This class of theories does not suffer from the consequences of Bell's theorem (it is not a theory of Kolmogorov probabilities) and Kochen–Specker's theorem (it has distributive “logic”). We discuss its predictability properties, the meaning of the classical limit and attempt to see if it can be experimentally distinguished from standard quantum theory. Our construction is operational and statistical, in the spirit of Copenhagen, but makes plausible the existence of a realist, geometric theory for individual quantum systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. von Neumann, The Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1996).

    Google Scholar 

  2. H. Everett, “Relative state formulation of quantum mechanics,” Rev. Mod. Phys. 29, 454 (1957).

    Google Scholar 

  3. B. DeWitt and N. Graham, eds., The Many Worlds Interpretation of Quantum Mechanics (Princeton University Press, Princeton, 1973).

    Google Scholar 

  4. R. B. Griffiths, “Consistent histories and the interpretation of quantum mechanics,” J. Stat. Phys. 36, 219 (1984).

    Google Scholar 

  5. R. Omnès, “Logical reformulation of quantum mechanics: I Foundations, J. Stat. Phys. 53, 893 (1988); The Interpretation of Quantum Mechanics (Princeton University Press, Princeton, 1994); “Consistent interpretations of quantum mechanics,” Rev. Mod. Phys. 64, 339 (1992).

    Google Scholar 

  6. M. Gell-Mann and J. B. Hartle, “Quantum mechanics in the light of quantum cosmology,” in Complexity, Entropy and the Physics of Information, W. Zurek, ed. (Addison Wesley, Reading, 1990); “Classical equations for quantum systems,” Phys. Rev. D 47, 3345 (1993).

    Google Scholar 

  7. J. B. Hartle, “Spacetime quantum mechanics and the quantum mechanics of spacetime,” in Proceedings on the 1992 Les Houches School, Gravitation and Quantisation, 1993.

  8. J. S. Bell, “On the Einstein–Podolsky–Rosen paradox,” Physics 1, 195 (1964).

    Google Scholar 

  9. S. Kochen and R. P. Specker, “The problem of hidden variables in quantum mechanicsa,” J. Math. Mech. 17, 59 (1967).

    Google Scholar 

  10. A. Aspect, J. Dalibard, and G. Roger, “Experimental realization of Einstein–Podolsky– Rosen–Bohm gedanken experiment: A N's Inequalities,” Phys. Rev. Lett. 49, 91 (1982).

    Google Scholar 

  11. D. Bohm, “A suggested interpretation of the quantum theory in terms of hidden variables,” Phys. Rev. 85, 166 (1952).

    Google Scholar 

  12. D. Bohm and B. J. Hiley, The Undivided Universe (Routledge, London, 1993).

    Google Scholar 

  13. Y. Aharonov and D. Bohm, “Significance of electromagnetic potentials in the quantum theory,” Phys. Rev. 115, 485 (1959).

    Google Scholar 

  14. C. Anastopoulos and K. Savvidou, “Quantum mechanical histories and the berry phase,” quant-ph/0007093.

  15. K. Savvidou, “The action operator in continuous time histories,” J. Math. Phys. 40, 5657 (1999).

    Google Scholar 

  16. J. J. Jauch, Foundations of Quantum Mechanics (Addison-Wesley, Reading, 1968).

    Google Scholar 

  17. E. B. Davies, Quantum Theory of Open System (Academic, London, 1976).

    Google Scholar 

  18. P. Busch, M. Grabowski, and P. J. Lahti, Operational Quantum Physics (Springer, Berlin, 1995).

    Google Scholar 

  19. R. G. Chambers, Phys. Rev. Lett. 5, 3 (1960).

    Google Scholar 

  20. J. Samuel and R. Bhandari, “General setting for Berry phase,” Phys. Rev. Lett. 60, 2339 (1988).

    Google Scholar 

  21. D. Suter, K. T. Mueller, and A. Pines, “Study of the Aharonov–Anandan quantum phase by NMR Interferometry,” Phys. Rev. Lett. 60, 1218 (1988).

    Google Scholar 

  22. F. Dowker and A. Kent, “On the consistent histories approach to quantum mechanics,” J. Stat. Phys. 82, 1575 (1996).

    Google Scholar 

  23. A. Kent, “Consistent sets yield contradictory inferences in quantum theory,” Phys. Rev. Lett. 78, 2874 (1997).

    Google Scholar 

  24. R. Griffiths and J. B. Hartle, “Comment on consistent sets yield contrary inferences in quantum theory,” Phys. Rev. Lett. 81, 1981 (1998).

    Google Scholar 

  25. R. Griffiths, “Consistent quantum counterfactuals,” Phys. Rev. A 60, 5 (1999).

    Google Scholar 

  26. C. J. Isham, “Topos theory and consistent histories:the internal logic of the set of all consistent sets,” Int. J. Theor. Phys. 36, 785 (1997).

    Google Scholar 

  27. R. D. Sorkin, “Quantum mechanics as quantum measure theory,” Mod. Phys. Lett. A 9, 3119 (1994).

    Google Scholar 

  28. R. D. Sorkin, “Quantum measure theory and its interpretation,” in Quantum Classical Correspondence, D. H. Feng and B. L. Huy, eds. (International Press, Cambridge, MA, 1997).

    Google Scholar 

  29. C. Anastopoulos, “Selection of preferred consistent sets,” Int. J. Theor. Phys. 37, 2261 (1998).

    Google Scholar 

  30. C. J. Isham, “Quantum logic and the histories approach to quantum theory,” J. Math. Phys. 35, 2157 (1994).

    Google Scholar 

  31. C. J. Isham and N. Linden, “Continuous histories and the history group in generalised quantum theory,” J. Math. Phys. 36, 5392 (1995).

    Google Scholar 

  32. C. J. Isham and N. Linden, “Quantum temporal logic and decoherence functionals in the histories approach to generalised quantum theory,” J. Math. Phys. 35, 5452 (1994).

    Google Scholar 

  33. E. Nelson, Quantum Fluctuations (Princeton University Press, Princeton, 1985).

    Google Scholar 

  34. J. S. Schwinger, “Brownian motion of a quantum oscillator,” J. Math. Phys. 2, 407 (1961).

    Google Scholar 

  35. L. V. Keldysh, “Diagram technique for nonequilibrium processes,” Zh. Eksp. Teor. Fiz. 47, 1515 (1964).

    Google Scholar 

  36. C. Anastopoulos, “Continuous-time histories:observables, probabilities, phase space structure and the classical limit,” quant-ph/0008052.

  37. J. Klauder, “The action option and a Feynman quantization of spinor fields in terms of ordinary c-numbers,” Ann. Phys. 11, 123 (1959).

    Google Scholar 

  38. A. Khrennikov, “Einstein and Bell, von Mises and Kolmogorov:Reality and locality, frequency and probability,” quant-ph/0006016.

  39. E. C. G. Stueckelberg, “Quantum theory in real Hilbert space,” Helv. Phys. Acta 33, 727 (1960).

    Google Scholar 

  40. A. Kent, “Quasiclassical dynamics in a closed quantum system,” Phys. Rev. A 54, 4670 (1996).

    Google Scholar 

  41. D. M. Greenberger, M. A. Horne, and A. Zeilinger, “Going beyond Bell's theorem” in Bell's Theorem, Quantum Theory and Conceptions of the Universe, M. Kafatos, ed. (Kluwer Academic, Dordrecht, 1989).

    Google Scholar 

  42. N. J. Woodhouse, Geometric Quantization (Oxford University Press, Oxford, 1992).

    Google Scholar 

  43. C. J. Isham, “Topological and global aspects of quantum theory,” in Proceedings of the 1983 Les Houches School, Relativity, Groups and Topology II.

  44. G. S. Agarwal, “Perspective of Einstein–Podolsky–Rosen spin correlations in the phase space formulation for arbitrary values of the spin,” Phys. Rev. A 47, 4608 (1993).

    Google Scholar 

  45. C. Isham, N. Linden, K. Savvidou, and S. Schreckenberg, “Continuous time and consistent histories,” J. Math. Phys. 37, 2261 (1998).

    Google Scholar 

  46. K. Savvidou, “Continuous time in consistent histories,” gr-qc/9912076.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anastopoulos, C. Quantum Theory Without Hilbert Spaces. Foundations of Physics 31, 1545–1580 (2001). https://doi.org/10.1023/A:1012690715414

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012690715414

Keywords

Navigation