Foundations of Physics

, Volume 31, Issue 12, pp 1767–1783 | Cite as

Rotating Frames in SRT: The Sagnac Effect and Related Issues

  • W. A. RodriguesJr.
  • M. Sharif


After recalling the rigorous mathematical representations in Relativity Theory (RT) of (i) observers, (ii) reference frames fields, (iii) their classifications, (iv) naturally adapted coordinate systems (nacs) to a given reference frame, (v) synchronization procedure and some other key concepts, we analyze three problems concerning experiments on rotating frames which even now (after almost a century after the birth of RT) are sources of misunderstandings and misconceptions. The first problem, which serves to illustrate the power of rigorous mathematical methods in RT, is the explanation of the Sagnac effect (SE). This presentation is opportune because recently there have appeared many non sequitur claims in the literature stating that the SE cannot be explained by SRT, even disproving this theory or claiming that the explanation of the effect requires a new theory of electrodynamics. The second example has to do with the measurement of the one-way velocity of light in rotating reference frames, a problem about which many wrong statements appear in recent literature. The third problem has to do with claims that only Lorentz-like type transformations can be used between the nacs associated with a reference frame mathematically modeling of a rotating platform and the nacs associated with a inertial frame (the laboratory). We show that these claims are equivocal.


Coordinate System Reference Frame Mathematical Method Recent Literature Mathematical Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Selleri, Found. Phys. 26, 641 (1996); 1, 73 (1997).Google Scholar
  2. 2.
    J. Croca J. and F. Selleri, Nuovo Cimento B 114, 447 (1999).Google Scholar
  3. 3.
    F. Goy and F. Selleri, Found. Phys. Lett. 10, 17 (1997).Google Scholar
  4. 4.
    J.-P. Vigier, Phys. Lett. A 234, 75 (1997).Google Scholar
  5. 5.
    T. W. Barett, Ann. Fond. L. de Broglie 14, 37 (1989); 15, 143 (1989); 15, 253 (1990); A. Lakhatia, ed., Essays of the Formal Aspects of Electromagnetic Theory (World Scientific, Singapore, 1993), pp. 6–86. T. W. Barett and D. M. Grimes, eds., Advanced Electromagnetism (World Scientific, Singapore, 1995), pp. 278–313.Google Scholar
  6. 6.
    P. K. Anastasovski et al. (AIAS group), Found Phys. Lett. 12, 579 (1999).Google Scholar
  7. 7.
    M. G. Sagnac, C.R.A.S. (Paris) 507, 708 (1913); 157, 1410 (1913).Google Scholar
  8. 8.
    E. J. Post, Rev. Mod. Phys. 39, 475 (1967).Google Scholar
  9. 9.
    C. B. Chiu, J. P. Hsu, and T. N. Sherry, Phys. Rev. D 16, 2420 (1977).Google Scholar
  10. 10.
    A. Asthekart and A. Magnon, J. Math. Phys. 16, 341 (1975)Google Scholar
  11. 11.
    J. Anadan, Phys. Rev. D 24, 338 (1981).Google Scholar
  12. 12.
    A. A. Logunov and Yu. V. Chugreev, Sov. Phys. Usp. 31, 861 (1988).Google Scholar
  13. 13.
    G. Rizzi and A. Tartaglia, Found. Phys. 28, 1663 (1998); 12, 179 (1999); 28, 1663 (1998).Google Scholar
  14. 14.
    T. Matolcsi, Found. Phys. 28, 1685 (1998).Google Scholar
  15. 15.
    R. D. Klauber, Found. Phys. 11, 405–483 (1998).Google Scholar
  16. 16.
    G. Trocheries, Philos. Mag. 40, 1143 (1949).Google Scholar
  17. 17.
    H. Takeno, Prog. Theor. Phys. 7, 367 (1952).Google Scholar
  18. 18.
    V. A. De Lorenzi and N. F. Svaiter, Found. Phys. 29, 1233 (1999); Int. J. Mod. Phys. A 14, 717 (1999); Yu.N. Gnedin, A. A. Grib, V. M. Mostepanenko, and W. A. Rodrigues, Jr., eds. in Proceedings Fourth A. Friedmann International Symposium on Gravitation and Cosmology (IMECC-UNICAMP Publ. Campinas, 1999), pp. 295–309.Google Scholar
  19. 19.
    W. A. Rodrigues, Jr., M. Scanavini, and L. P. de Alcantara, Found. Phys. Lett. 3, 59 (1990).Google Scholar
  20. 20.
    W. A. Rodrigues, Jr. and M. A. F. Rosa, Found. Phys. 19, 705 (1989).Google Scholar
  21. 21.
    W. A. Rodrigues, Jr. and E. Capelas de Oliveira, Phys. Lett. A. 140, 479 (1989).Google Scholar
  22. 22.
    R. K. Sachs and H. Wu, General Relativity for Mathematicians (Springer, New York, 1977).Google Scholar
  23. 23.
    J. E. Maiorino and W. A. Rodrigues, Jr., “What is superluminal wave motion?” Sci. Tech. Mag. 2(2) (1999); electronic book at'stm.Google Scholar
  24. 24.
    W. A. Rodrigues, Jr. and M. Sharif, “Equivalence principle and the principle of local Lorentz invariance,” Found. Phys. 31(12) (2001).Google Scholar
  25. 25.
    Y. Choquet-Bruhat, C. Dewitt-Morette, and M. Dillard-Bleick, Analysis, Manifolds and Physics, revised version (North-Holland, Amsterdam, 1982).Google Scholar
  26. 26.
    L. D. Landau and E. M. Lifschitz, The Classical Theory of Fields, 4th revised English edition (Pergamon, Oxford, 1975).Google Scholar
  27. 27.
    T. Matolcsi, Spacetime Without Reference Frames (Akadèmiai Kiadò, Budapest, 1993).Google Scholar
  28. 28.
    G. C. Scorgie, Eur. J. Phys. 12, 64 (1991).Google Scholar
  29. 29.
    T. B. Bahder, IEEE Trans. Aerospace and Electr. Syst. 34, 1350 (1998).Google Scholar
  30. 30.
    H. Reinchbach, The Philosophy of Space and Time (Dover, New York, 1958).Google Scholar
  31. 31.
    W. A. Rodrigues, Jr. and J. Tiomno, Found. Phys. 15, 945 (1985).Google Scholar
  32. 32.
    R. Mansouri and R. U. Sexl, Gen. Rel. Grav. 8, 497 (1977).Google Scholar
  33. 33.
    R. Anderson, I. Vetharaniam I., and G. E. Stedman, Phys. Rep. 295, 93 (1998).Google Scholar
  34. 34.
    C. Leuber, K. Aufinger, and P. Krumm, Eur. J. Phys. 13, 170 (1992).Google Scholar
  35. 35.
    T. Ivezic, Found. Phys. Lett. 12 (1999).Google Scholar
  36. 36.
    T. Aubin, A Course in Differential Geometry (Graduate Studies in Mathematics, Vol. 27) (American Mathematical Society, Providence, 2001).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • W. A. RodriguesJr.
    • 1
    • 2
  • M. Sharif
    • 3
  1. 1.Institute of Mathematics, Statistics and Scientific ComputationIMECC-UNICAMPCampinas, SPBrazil
  2. 2.Wernher von Braun Advanced Research Center, UNISALCampinas, SPBrazil
  3. 3.Institute of Mathematics, Statistics and Scientific ComputationIMECC-UNICAMPCampinas, SPBrazil

Personalised recommendations