Advertisement

Automation and Remote Control

, Volume 62, Issue 10, pp 1565–1587 | Cite as

Spectral Methods in Logical Data Analysis

  • V. S. Vykhovanets
Article

Abstract

A discrete function of arguments of different digits is represented as a formula in a functionally complete base of operations. Bases consisting of two algebraic operations, a fixed set of functions, and functions from a given class are studied. Such a representation is related to spectral expansions. A synthesis method for polynomial and nonpolynomial forms is designed. Information and asymptotic estimates of the complexities of formulas are determined.

Keywords

Data Analysis Mechanical Engineer System Theory Logical Data Synthesis Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Semon, W.L., Characteristic Numbers and Their Use in the Decomposition of Switching Functions, Proc. ACM., 1952, vol. 17, pp. 273–280.Google Scholar
  2. 2.
    Bibilo, P.N., Decomposition of Boolean Functions (A Review), in Proektirovanie ustroistv logicheskogo upravleniya (Design of Logic Control Devices), Moscow: Nauka, 1985, pp. 106–126.Google Scholar
  3. 3.
    Bryant, R.E., Graph-based Algorithms for Boolean Function Manipulation, IEEE Trans. Comp., 1986, vol. 35, pp. 677–691.Google Scholar
  4. 4.
    Kuznetsov, O.P., Program Realization of Logical Functions and Automata, Avtom. Telemekh., 1977, no. 7, pp. 163–174; no. 9, pp. 137–139.Google Scholar
  5. 5.
    Boole, G., The Laws of Thought, London: Macmillan, 1854.Google Scholar
  6. 6.
    Zhegalkin, I.I., A Procedure for Computing Propositions in Symbolic Logic, Mat. Sb., 1927, vol. 43, pp. 9–28.Google Scholar
  7. 7.
    Merekin, Yu.V., Arithmetical Forms of Boolean Expressions and Their Application in Circuit Reliability Computations, Vychisl. Sist., 1963, issue 7, pp. 13–23.Google Scholar
  8. 8.
    Malyugin, V.D., Realization of Boolean Functions by Arithmetic Polynomials, Avtom. Telemekh., 1982, no. 4, pp. 84–93.Google Scholar
  9. 9.
    Yablonskii, S.V., Functional Constructs in the k-Valued Logic, Trudy Mat. Inst. Steklova, 1958, vol. 51, pp. 5–142.Google Scholar
  10. 10.
    Dubrova, E.V. and Muzio, J. C., The Generalized Reed-Muller Canonical Form for a Multiple-Valued Algebra, Multiple-Valued Logic, 1996, no. 1, pp. 65–84.Google Scholar
  11. 11.
    Vykhovanets, V.S. and Malyugin, V.D., Multiple Logical Computations, Avtom. Telemekh., 1998, no. 6, pp. 163–171.Google Scholar
  12. 12.
    Tosic, Z., Analytical Representation of an m-Valued Logical Function over the Ring of Integers Modulo m, Ph.D. Thesis, Beograd, 1972.Google Scholar
  13. 13.
    Strazdins, I.J., The Polynomial Algebra of Multivalued Logic, in: Algebra, Combinatorics, and Logic in Computer Science, 1983, vol. 42, pp. 777–785.Google Scholar
  14. 14.
    Cohn, M., Switching Functions Canonical Form over Integer Fields, Ph.D. Thesis, Harvard Univ., 1960.Google Scholar
  15. 15.
    Pradhan, D. K. A Multi-Valued Algebra Based on Finite Fields, Int. Symp. MVL., 1974, pp. 95–112.Google Scholar
  16. 16.
    Kurkharev, G.A., Shmerko, V.O., and Yakushkevich, S.P., Tekhnika parallel'noi obrabotki binarnykh dannykh na SBIS (Parallel Processing of Binary Data with Large-Scale IC), Minsk: Vysheishaya Shkola, 1991.Google Scholar
  17. 17.
    Lidl, R. and Niederreiter, H., Finite Fields, Translated under the title Konechnye polya, Moscow: Mir, 1988.Google Scholar
  18. 18.
    Artin, E., Geometricheskaya algebra (Geometric Algebra), Moscow: Nauka, 1969.Google Scholar
  19. 19.
    Vykhovanets, V.S., Parallel Computation in Time, Avtom. Telemekh., 1999, no. 12, pp. 155–165.Google Scholar
  20. 20.
    Korn, G.A. and Korn, T.M., Mathematical Handbook for Scientists and Engineers, New York: McGraw-Hill, 1968. Translated under the title Spravochnik po matematike glya nauchnykh pabotnikov i inzhenerov, Moscow: Nauka, 1978.Google Scholar
  21. 21.
    Reed, L.S., A Class of Multiple Error-Correction Codes and Their Decoding Scheme, IRE Trans. Inf. Theory, 1954, vol. 4, pp. 38–42.Google Scholar
  22. 22.
    Muller, D.E., Application of Boolean Algebra to Switching Circuit Design and to Error Detection, IRE Trans. Electron. Comput., 1954, vol. 3, pp. 6–12.Google Scholar
  23. 23.
    Vykhovanets, V.S., The Generalized Multiplicative Forms, in Int. Conf. Control Prob., Moscow, 1999, vol. 3, pp. 319–321.Google Scholar
  24. 24.
    Haar, A., Zur Theorie der orthogonolen Funktionensysteme, Math. Ann., 1910, vol. 69, pp. 331–371.Google Scholar
  25. 25.
    Kukharev, G.A. and Shmerko, V.P., New Potentialities of Discrete Fourier Transformation for Analytical Description of Binary and Multivalued Data, in: Raspoznavanie, klassiffkatsiya, prognoz. Matematicheskie metody i ikh primenenie (Recognition of Classiffcations and Prediction: Mathematical Methods and Their Application), Moscow: Nauka, 1991, vol. 3, pp. 112–147.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • V. S. Vykhovanets
    • 1
  1. 1.Pridnestrovsk State UniversityTiraspolMoldova

Personalised recommendations