Skip to main content
Log in

Best Sobolev Constants and Manifolds with Positive Scalar Curvature Metrics

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We study the Yamabe invariant of manifolds which admit metrics of positive scalar curvature. Analysing `best Sobolev constants'we give a technique to find positive lower bounds for the invariant.We apply these ideas to show that for any compact Riemannian manifold (N n,g) of positive scalarcurvature there is a positive constant K =K(N, g), which depends only on (N, g), such that for any compact manifold M m, the Yamabe invariantof M m × N nis no less than K times the invariant ofS n + m. We will find some estimates for the constant K in the case N =S n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aubin, T.: The scalar curvature, in: M. Cahen and M. Flato (eds), Differential Geometry and Relativity, Reidel, Dordrecht, 1976.

    Google Scholar 

  2. Aubin, T.: Problemes isoperimetriques et espaces de Sobolev, J. Differential Geom. 11 (1976), 573-598.

    Google Scholar 

  3. Gursky, M. and LeBrun, C.: Yamabe invariants and spinc structures, Geom. Funct. Anal. 8 (1998), 965-977.

    Google Scholar 

  4. Kobayashi, O.: Scalar curvature of a metric with unit volume, Math. Ann. 279 (1987), 253-265.

    Google Scholar 

  5. LeBrun, C.: Yamabe constants and the perturbed Seiberg-Witten equations, Comm. Anal. Geom. 5 (1997), 535-553.

    Google Scholar 

  6. Lee, J. and Parker, T.: The Yamabe problem, Bull. Amer. Math. Soc. 17 (1987), 37-81.

    Google Scholar 

  7. Petean, J. and Yun, G.: Surgery and the Yamabe invariant, Geom. Funct. Anal. 9 (1999), 1189-1199.

    Google Scholar 

  8. Petean, J.: The Yamabe invariant of simply connected manifolds, J. reine angew. Math. 523 (2000), 225-231.

    Google Scholar 

  9. Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom. 20 (1984), 479-495.

    Google Scholar 

  10. Schoen, R.: Variational Theory for the Total Scalar Curvature Functional for Riemannian Metrics and Related Topics, Lecture Notes in Math. 1365, Springer-Verlag, Berlin, 1987, pp. 120-154.

    Google Scholar 

  11. Trudinger, N. S.: Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa 22 (1968), 265-274.

    Google Scholar 

  12. Yamabe, H.: On a deformation of Riemannian structures on compact manifolds, Osaka Math. J. 12 (1960), 21-37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petean, J. Best Sobolev Constants and Manifolds with Positive Scalar Curvature Metrics. Annals of Global Analysis and Geometry 20, 231–242 (2001). https://doi.org/10.1023/A:1012037030262

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012037030262

Navigation