Siberian Mathematical Journal

, Volume 42, Issue 5, pp 851–864 | Cite as

Uniform Domains and NTA-Domains in Carnot Groups

  • A. V. Greshnov


Carnot Group Uniform Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gromov M., Carnot-Carathéodory Spaces Seen from Within [Preprint, IHES/M/94/6], IHES, Bures-sur-Yvette (1994).Google Scholar
  2. 2.
    Pansu P., “Métriques de Carnot—Carathéodory et quasiisométries des espaces symétriques de rang un,” Ann. Math., 129, 1-60 (1989).Google Scholar
  3. 3.
    Postnikov M. M., Lie Groups and Lie Algebras [in Russian], Nauka, Moscow (1982).Google Scholar
  4. 4.
    Strichards R., “Sub-Reimannian geometry,” J. Differential Geom., 24, No. 2, 221-262 (1986).Google Scholar
  5. 5.
    Korányi A. and Reimann H. M., “Foundations for the theory of quasiconformal mappings on the Heisenberg group,” Adv. Math., 111, No. 1, 1-87 (1995).Google Scholar
  6. 6.
    Gehring F. W. and Osgood B. G., “Uniform domains and the quasi-hyperbolic metric,” J. Anal. Math., 36, 50-74 (1979).Google Scholar
  7. 7.
    Vodop'yanov S. K. and Greshnov A. V., “On extension of functions of bounded mean oscillation from domains in a space of homogeneous type with intrinsic metric,” Sibirsk. Mat. Zh., 36, No. 5, 1015-1048 (1995).Google Scholar
  8. 8.
    Jones P. W., “Quasiconformal mappings and extendability of functions in Sobolev spaces,” Acta Math., No. 147, 71-88 (1981).Google Scholar
  9. 9.
    Koskela P., Capacity Extension Domain [Preprint, No. 73/Soumalainen Tiedakatemia/Helsinki/1990], Univ. of Jyväskyl ä, Helsinki (1990).Google Scholar
  10. 10.
    Jerison D. and Kenig C., “Boundary behavior of harmonic functions in non-tangentially accessible domains,” Adv. Math., 47, No. 1, 80-147 (1982).Google Scholar
  11. 11.
    Capogna L. and Tang P., “Uniform domains and quasiconformal mappings on the Heisenberg group,” Manuscripta Math., 86, No. 3, 267-281 (1995).Google Scholar
  12. 12.
    Martio O. and Sarvas J., “Injectivity theorems in plane and space,” Ann. Acad. Sci. Fenn. Ser. AI Math., 4, 383-401 (1979).Google Scholar
  13. 13.
    Jones P., “Extension theorems for BMO,” Indiana Univ. Math., 29, No. 1, 41-66 (1980).Google Scholar
  14. 14.
    Wittmann R., “A non-tangential limit theorem,” Osaka J. Math., 24, No. 1, 61-76 (1987).Google Scholar
  15. 15.
    Capogna L. and Garofalo N., “Non tangentially accessible domains for Carnot—Carathéodory metrics and a Fatou type theorem,” C. R. Acad. Sci. Paris. Sér. I Math., 321, No. 12, 1565-1570 (1995).Google Scholar
  16. 16.
    Capogna L. and Garofalo N., “Boundary behavior of non-negative solutions of subelliptic equations in NTA-domains for Carnot—Carathéodory metrics,” Fourier Anal. Appl., 4, No. 4, 403-432 (1998).Google Scholar
  17. 17.
    Greshnov A. V., “Domains satisfying the interior and exterior corkscrew conditions in metric spaces,” in: Proceedings of the 12 Siberian School “Algebra, Geometry, Analysis, and Mathematical Physics,” Sibirsk. Otdel., Novosibirsk, 1999, pp. 54-67.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • A. V. Greshnov
    • 1
  1. 1.The Sobolev Institute of MathematicsNovosibirsk

Personalised recommendations