Advertisement

Siberian Mathematical Journal

, Volume 42, Issue 5, pp 936–941 | Cite as

Pseudodual Grids and Extensions of Generalized Quadrangles

  • A. A. Makhnev
Article

Keywords

Generalize Quadrangle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cameron P., Hughes D. R., and Pasini A., “Extended generalized quadrangles,” Geom. Dedicata, 35, 193-228 (1990).Google Scholar
  2. 2.
    Pasini A., “Remarks on double ovoids in finite classical generalized quadrangles, with an application to extended generalized quadrangles,” Quart J. Pure Appl. Math., 66, 41-68 (1992).Google Scholar
  3. 3.
    Fisher P. and Hobart S., “Triangular extended generalized quadrangles,” Geom. Dedicata, 37, 339-344 (1991).Google Scholar
  4. 4.
    Del Fra A., Ghinelli D., Meixner T., and Pasini A., “Flag-transitive extensions of C n geometries,” Geom. Dedicata, 37, 253-273 (1992).Google Scholar
  5. 5.
    Pain S. and Thas J. A., Finite generalized quadrangles, Pitman, Boston (1984).Google Scholar
  6. 6.
    Pasechnik D. V., “The triangular extensions of a generalized quadrangle of order (3,3),” Bull. Belg. Math. Soc., 2, 509-518 (1995).Google Scholar
  7. 7.
    Makhnëv A. A. and Paduchikh D. V., “Completely regular, locally GQ(4,2) graphs,” in: Abstracts: The International Conference Dedicated to the Memory of A. G. Kurosh, Moscow Univ., Moscow, 1998, pp. 188-189.Google Scholar
  8. 8.
    Thas J. A., “Some new classes of extended generalized quadrangles of order (q + 1, q − 1),” Bull. Belg. Math. Soc., 5, 461-467 (1998).Google Scholar
  9. 9.
    Yoshiara S., “On some flag-transitive non-classical c.C 2-geometries,” European J. Combin., 14, 59-77 (1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • A. A. Makhnev
    • 1
  1. 1.The Institute of Mathematics and MechanicsEkaterinburg

Personalised recommendations