Siberian Mathematical Journal

, Volume 42, Issue 5, pp 865–883 | Cite as

Isomorphic Properties of One Class of Differential Operators and Their Applications

  • G. V. Demidenko


We consider a special class of quasielliptic matrix operators and establish isomorphic properties of these operators in special scales of weighted Sobolev spaces. We give an example of application of these results to systems of differential equations that are not solved with respect to the derivative.


Differential Equation Differential Operator Sobolev Space Special Class Matrix Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Demidenko G. V. and Uspenskiî, S. V., Equations and Systems That Are Not Solved with Respect to the Higher Derivative [in Russian], Nauchnaya Kniga, Novosibirsk (1998).Google Scholar
  2. 2.
    Demidenko G. V., “On weighted Sobolev spaces and integral operators determined by quasielliptic equations,” Dokl. Akad. Nauk, 334, No. 4, 420-423 (1994).Google Scholar
  3. 3.
    Demidenko G. V., “On quasielliptic operators in Rn,” Sibirsk. Mat. Zh., 39, No. 5, 1028-1037 (1998).Google Scholar
  4. 4.
    Kudryavtsev L. D., “Embedding theorems for functions defined on the whole space or half-space,” I: Mat. Sb., 69, No. 4, 616-639 (1966); II: Mat. Sb., 70, No. 1, 3-35 (1966).Google Scholar
  5. 5.
    Kudryavtsev L. D. and Nikol'skiî, S. M., “Spaces of di_erentiable functions in several variables and embedding theorems,” in: Contemporary Problems of Mathematics. Fundamental Trends [in Russian], VINITI, Moscow, 1988, 26, pp. 5-157 (Itogi Nauki i Tekhniki).Google Scholar
  6. 6.
    Sobolev S. L., “On a new problem of mathematical physics,” Izv. Akad. Nauk SSSR Ser. Mat., 18, No. 1, 3-50 (1954).Google Scholar
  7. 7.
    Maslennikova V. N., “Estimates in L p and asymptotic behavior of a solution to the Cauchy problem for the Sobolev system as t → ∞,” Trudy Mat. Inst. Steklov, 103, 117-141 (1968).Google Scholar
  8. 8.
    Cantor M., “Elliptic operators and the decomposition of tensor fields,” Bull. Amer. Math. Soc., 5, No. 3, 235-262 (1981).Google Scholar
  9. 9.
    Choquet-Bruhat Y. and Christodoulou D., “Elliptic systems in H s, σ spaces on manifolds which are Euclidean at infinity,” Acta Math., 146, No. 1/2, 129-150 (1981).Google Scholar
  10. 10.
    Lockhart R. B. and McOwen R. C., “Elliptic differential operators on noncompact manifolds,” Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 12, No. 3, 409-447 (1985).Google Scholar
  11. 11.
    Amrouche C., Girault V., and Giroire J., “Espaces de Sobolev avec poids et equation de Laplace dans R n (Partie I),” C. R. Acad. Sci. Paris Ser. I, 315, 269-274 (1992).Google Scholar
  12. 12.
    Hile G. N. and Mawata C. P., “The behavior of the heat operator on weighted Sobolev spaces,” Trans. Amer. Math. Soc., 350, No. 4, 1407-1428 (1998).Google Scholar
  13. 13.
    Demidenko G. V., “Isomorphic properties of one class of differential operators,” in: Abstracts: The Fourth Siberian Congress on Applied and Industrial Mathematics Dedicated to the Memory of M. A. Lavrent'ev. Part 1, Inst. Mat. (Novosibirsk), Novosibirsk, 2000, pp. 123-124.Google Scholar
  14. 14.
    Uspenskiî, S. V., “On representation of functions determined by a certain class of hypoelliptic operators,” Trudy Mat. Inst. Steklov, 117, 292-299 (1972).Google Scholar
  15. 15.
    Lizorkin P. I., “Generalized Liouville di_erentiation and the multiplier method in the theory of embeddings of classes of di_erentiable functions,” Trudy Mat. Inst. Steklov, 105, 89-167 (1969).Google Scholar
  16. 16.
    Hardy G. H., Littlewood J. E., and Pólya G., Inequalities [Russian translation], Izdat. Inostr. Lit., Moscow (1948).Google Scholar
  17. 17.
    Daletskiî, Yu. L. and Kreîn, M. G., Stability of Solutions to Differential Equations in Banach Space [in Russian], Nauka, Moscow (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • G. V. Demidenko
    • 1
  1. 1.The Sobolev Institute of MathematicsNovosibirsk

Personalised recommendations