Annals of Global Analysis and Geometry

, Volume 19, Issue 3, pp 235–257 | Cite as

Eigenvalues of the Dirac Operator on Fibrations over S1

  • Margarita Kraus


We consider the Dirac operator on fibrations overS1 which have up to holonomy a warped product metric. Wegive lower bounds for the eigenvalues on M and if the Diracoperator on the typical fibre F has a kernel, we calculatethe corresponding part of the spectrum on M explicitly.

Moreover, we discuss the dependence of the spectrum of theholonomy and obtain bounds for the multiplicity of the eigenvalues.

Dirac operator fibration holonomy spectrum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agricola, I., Ammann, B. and Friedrich, Th.: A comparison of the eigenvalues of the Dirac and Laplace operator on the two-dimensional torus, Manuscripta Math. 100 (1999), 231-258.Google Scholar
  2. 2.
    Agricola, I. and Friedrich, Th.: Upper bounds for the Dirac operator on surfaces, J. Geom. Phys. 30 (1999), 1-22.Google Scholar
  3. 3.
    Alekseevsky, A. V. and Alekseevsky, D. V.: Riemannian G-manifold with one-dimensional orbit space, Ann. Global Anal. Geom. 11 (1993), 197-211.Google Scholar
  4. 4.
    Ammann, B.: Spin-Strukturen und das Spektrum des Dirac-Operators, Dissertation, Shaker-Verlag, Aachen, 1998.Google Scholar
  5. 5.
    Ammann, B.: The Dirac operator on collapsing S 1-bundles, Preprint 39/1998 der Mathematischen Fakultät der Universität Freiburg.Google Scholar
  6. 6.
    Ammann, B. and Bär, C.: The Dirac operator on nilmanifolds and collapsing circle bundles, Ann. Global Anal. Geom. 16 (1998), 221-253.Google Scholar
  7. 7.
    Bär, C.: Das Spektrum von Dirac-Operatoren, Dissertation, Bonn, 1990.Google Scholar
  8. 8.
    Bär, C.: Extrinsic bounds for eigenvalues of the Dirac operator, Ann. Global Anal. Geom. 16 (1998), 573-596.Google Scholar
  9. 9.
    Bär, C.: Metrics with harmonic spinors, GAFA 6(6), (1996), 899-942.Google Scholar
  10. 10.
    Baum, H., Friedrich, Th., Grunewald, R. and Kath, I.: Twistors and Killing Spinors on Riemannian Manifolds, Teubner, Stuttgart, 1991.Google Scholar
  11. 11.
    Eastham, M. S. P.: The Spectral Theory of Periodic Differential Equations, Scottish Academic Press, Edinburgh, 1973.Google Scholar
  12. 12.
    Friedrich, Th.: Dirac-Operatoren in der Riemannschen Geometrie, Vieweg, Braunschweig, 1997.Google Scholar
  13. 13.
    Friedrich, Th.: Die Abhängigkeit des Dirac-Operators von der Spin-Struktur, Colloq. Math. 48(1) (1984), 57-62.Google Scholar
  14. 14.
    Friedrich, Th.: On the spinor representation of surfaces in Euclidean 3-space, J. Geom. Phys. 28 (1998), 143-157.Google Scholar
  15. 15.
    Hitchin, N.: Harmonic spinors, Adv. Math. 14 (1974), 1-55.Google Scholar
  16. 16.
    Kraus, M.: Lower bounds for the eigenvalues of the Dirac operator on surfaces of rotation, J. Geom. Phys. 31 (1999), 209-216.Google Scholar
  17. 17.
    Kraus, M.: Lower bounds for eigenvalues of the Dirac operator on n-spheres with SO(n)-symmetry, J. Geom. Phys. 32(4) (2000), 341-348.Google Scholar
  18. 18.
    Lawson, H.-B. and Michelsohn, M.-L.: Spin Geometry, Princeton Univ. Press, Princeton, NJ, 1989.Google Scholar
  19. 19.
    Lott, J.: Eigenvalue bounds for the Dirac operator, Pacific J. Math. 125 (1986), 117-126.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Margarita Kraus
    • 1
  1. 1.Fakultät für MathematikUniversität RegensburgRegensburgGermany

Personalised recommendations