Advertisement

Automation and Remote Control

, Volume 62, Issue 4, pp 536–547 | Cite as

Design of a Modified Controller in the State Space

  • M. G. Zotov
Article
  • 30 Downloads

Abstract

A controller of an object that is designed in the space of states generally consists of two blocks: an observer and a block implementing a control law. The combination of the two blocks to form a unified block (modified controller) permits reducing the computational and the algorithmic complexity of processing the measurable information. Optimality criteria with small parameters are set up, which offer the possibility of designing a modified controller, leaving out the procedure of design of an observer.

Keywords

Mechanical Engineer State Space System Theory Small Parameter Optimality Criterion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Krasovskii, A.A., Science Development and the State of the Theory of Control Processes, Avtom. Telemekh., 2000, no. 4, pp. 3–19.Google Scholar
  2. 2.
    Bukov, V.N., Kulabukhov, V.S., Maksimenko, I.M., et al., Embedding of Systems, Avtom. Telemekh., 1999, no. 8, pp. 61–73.Google Scholar
  3. 3.
    Bukov, V.N. and Ryabchenko, V.N., Embedding of Systems. Promatrices, Avtom. Telemekh., 2000, no. 4, pp. 20–23.Google Scholar
  4. 4.
    Bukov, V.N. and Ryabchenko, V.N., Embedding of Systems. Scalar Images, Avtom. Telemekh., 2000, no. 5, pp. 3–19.Google Scholar
  5. 5.
    Bukov, V.N. and Ryabchenko, V.N., Embedding of Systems. Stability Margin, Avtom. Telemekh., 2000, no. 6, pp. 19–28.Google Scholar
  6. 6.
    Nikolaev, Yu.P., Phase Stability Margin and the Space of Parameters of a Continuous Linear System, Avtom. Telemekh., 2000, no. 3, pp. 102–113.Google Scholar
  7. 7.
    Polyakov, A.R. and Semenikhin, K.V., Methods of the Parametric Identification of Multidimensional Linear Models Under Prior Uncertainty Conditions, Avtom. Telemekh., 2000, no. 5, pp. 76–92.Google Scholar
  8. 8.
    Dylevskii, A.V. and Lozgachev, G.I., The Use of the State Space Method for Synthesis of Differentiators, Avtom. Telemekh., 2000, no. 6, pp. 19–28.Google Scholar
  9. 9.
    Andreev, Yu.N., Upravlenie konechnomernymi lineinymi ob"ektami (Control of Finite-Dimensional Linear Objects), Moscow: Nauka, 1976.Google Scholar
  10. 10.
    Pervozvanskii, A.A., Kurs teorii avtomaticheskogo upravleniya (The Course in the Theory of Automatic Control), Moscow: Nauka, 1986.Google Scholar
  11. 11.
    Kwakernaak, H. and Sivan, R., Linear Optimal Control Systems, New York: Wiley, 1972.Google Scholar
  12. 12.
    Afanas'ev, V.N., Kolmanivskii, V.B., and Nosov, V.R., Mathematicheskaya teoriya konstruirovaniya sistem upravleniya (The Mathematical Theory of Design of Control Systems), Moscow: Vysshaya Shkola, 1998.Google Scholar
  13. 13.
    Kuo, B., Digital Control Systems, Holt: Rinehart and Winston, 1980.Google Scholar
  14. 14.
    Neroda, V.Ya., Torbinskii, V.E., and Shlykov, E.L., Odnokristal'nye mikroEVM MCS-51 (Arkhitektura) (Single-Chip Microcomputers MCS-51 (Architecture)), Moscow: Digital Components, 1995.Google Scholar
  15. 15.
    Kolmanovskii, V.B., Equations with the Aftereffect and Mathematical Modeling, Sorosovsk. Obrazovat. Zh., 1996, no. 4, pp. 122–127.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • M. G. Zotov
    • 1
  1. 1.Moscow State Institute of Electronics and MathematicsMoscowRussia

Personalised recommendations