Advertisement

Automation and Remote Control

, Volume 62, Issue 4, pp 624–629 | Cite as

Dual Estimates of the Optimal Plan Model and Regional Market Costs: A Relationship

  • Yu. M. Tsodikov
  • Ya. Yu. Tsodikova
Article

Abstract

The relationship between linear programming dual estimates for the optimal production plan model and real regional market costs is studied. A two-stage linear programming model is necessary for exact approximation of cost allocation in analyzing with optimal plan estimates. A sign criterion is formulated for analyzing the reliability of the production planning model based on a comparison of the changes in the regional market costs and optimal plan estimates. An example is given to illustrate the analysis of reliability of the solution.

Keywords

Mechanical Engineer System Theory Programming Model Production Plan Plan Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Kantorovich, L.V., Ekonomicheskii raschet nailuchshego ispol'zovaniya resursov (Best Utilization Of Resources: An Economic Computation), Moscow: Akad. Nauk SSSR, 1959.Google Scholar
  2. 2.
    Dantzig, G., Linear Programming and Extensions, Princeton: Princeton Univ. Press, 1963. Translated under the title Lineinoe programmirovanie, ego obobshcheniya i primeneniya, Moscow: Progress, 1966.Google Scholar
  3. 3.
    Volkonskii, V.A., Printsipy optimal'nogo planirovaniya (Principles of Optimal Planning), Moscow: Ekonomika, 1973.Google Scholar
  4. 4.
    Yudin, D.B. and Yudin, A.D., Ekstremal'nye modeli v ekonomike (Extremal Models in Economics), Moscow: Nauka, 1975.Google Scholar
  5. 5.
    Propoi, A.I., Modelirovanie resursno-ekonomicheskikh sistem (Modeling of Economic Resource Systems), Moscow: Mos. Ekon. Stat. Inst., 1985.Google Scholar
  6. 6.
    Lasdon, L.S., Optimization Theory for Large Systems, London: Macmillan, 1969. Translated under the tile Optimizatsiya bol'shikh sistem, Moscow: Nauka, 1975.Google Scholar
  7. 7.
    Pervozvanskii, A.A., Matematicheskie modeli v upravlenii proizvodstvom (Mathematical Models of Production Management), Moscow: Nauka, 1975.Google Scholar
  8. 8.
    Suvorov, B.P., Osnovy optimizatsii tekushchego otraslevogo planirovaniya (Optimization Principles of Current Sectorial Planning), Moscow: Ekonomika, 1987.Google Scholar
  9. 9.
    Didnikov, E.E. and Tsodikov, Yu.M., Tipovye zadachi operativnogo upravlenie nepreryvnym proizvodstvom (Typical Problems in Real-Time Control of Continuous Production), Moscow: Energiya, 1979.Google Scholar
  10. 10.
    Semenov, V.A., Obzor zarubezhnykh optovykh rynkov elektroenergii (Foreign Wholesale Power Markets: A Review), Ivanovo: RAO EES Ross., 1998.Google Scholar
  11. 11.
    Cost Allocation: Methods, Principles, Applications, Young, H.P., Ed., Amsterdam: North-Holland, 1985.Google Scholar
  12. 12.
    Petrochemical Report: Oil and Gas, May 1996, pp. 56–58.Google Scholar
  13. 13.
    Owen, D.B., Sbornik statisticheskikh tablits (Collected Statistical Tables), Moscow: Vychisl. Tsenter Akad. Nauk SSSR, 1973.Google Scholar
  14. 14.
    Boldin, M.V., Simonova, G.I., and Tyurin, Yu.N., Znakovyi statisticheskii analiz lineinykh modelei (Statistical Signature Analysis of Linear Models), Moscow: Nauka, 1997.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • Yu. M. Tsodikov
    • 1
  • Ya. Yu. Tsodikova
    • 1
  1. 1.Trapeznikov Institute of Control SciencesRussian Academy of SciencesMoscowRussia

Personalised recommendations