Skip to main content
Log in

The Classical Regulation Problem: Its Solution by Optimal Control Methods

  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

The fundamental problem of the classical regulation theory in the class of bounded control is investigated. Optimal control methods are applied to design operation algorithms for regulators, which generate in real time feedback for transferring a system from the neighborhood of one equilibrium state (steady-state motion) to the neighborhood of another state with transition process of high quality and stabilize the system relative to the new equilibrium state. The results are illustrated by an example of regulation of a fourth-order dynamic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Hopkin, A.M., A Phase-Plan Approach to the Compensation of Saturating Servomechanisms, Trans. AIEE, 1951, part 1, vol. 70, pp. 631-639.

    Google Scholar 

  2. Fel'dbaum, A.A., Osnovy teorii optimal'nykh avtomaticheskikh sistem (Elements of Automatic Optimal System Theory), Moscow: Fizmatgiz, 1963.

    Google Scholar 

  3. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., et al., Matematicheskaya teoriya optima'nykh protsessov (Mathematical Theory of Optimal Processes), Moscow: Nauka, 1976.

    Google Scholar 

  4. Bellman, R., Dynamic Programming, Princeton: Princeton Univ. Press, 1957. Translated under the title Dinamicheskoe programmirovanie, Moscow: Inostrannaya Literatura, 1960.

    Google Scholar 

  5. Dantzig, G., Linear Programming and Extensions, Princeton: Princeton Univ. Press, 1963. Translated under the title Lineinoe programmirovanie, ego primeneniya i obobshcheniya, Moscow: Progress, 1966.

    Google Scholar 

  6. Aizerman, M.A., Lektsii po teorii avtomaticheskogo regulirovaniya (Lectures on Automatic Regulation Theory), Moscow: Fizmatgiz, 1958.

    Google Scholar 

  7. Krasovskii, N.N., Stabilization of Controlled Motion, in Teoriya ustoichivosti dvizheniya (Theory of Stability of Motion), Malkin, I.G., Ed., Moscow: Nauka, 1966.

    Google Scholar 

  8. Gabasov, R., Krillova, F.M., and Kostyukova, O.I., Optimization of A Linear Control System in Real Time, Izv. Ross. Akad. Nauk, Tekh. Kibern., 1992, no. 4, pp. 3-19.

  9. Gabasov, R., Krillova, F.M., and Kostyukova, O.I., Stabilization Methods for Dynamic Systems, Izv. Ross. Akad. Nauk, Tekh. Kibern., 1994, no. 3, pp. 67-77.

  10. Gabasov, R., Krillova, F.M., and Kostina, E.A., Closable State Feedback for Optimization of Uncertain Control Systems. I. Single Closure, Avtomat. Telemekh., 1996, no. 7, pp. 121-130.

  11. Gabasov, R., Krillova, F.M., and Kostina, E.A., Closable State Feedback for Optimization of Uncertain Control Systems. II. Multiple Closure, Avtomat. Telemekh., 1996, no. 8, pp. 90-99.

  12. Gabasov, R. and Ruzhitskaya, E.A., Robust Stabilization of Dynamic Systems by Constrained Controls, Prikl. Mat. Mekh., 1998, vol. 62, issue 5, pp. 778-786.

    Google Scholar 

  13. Gabasov, R., Kirillova, F.M., and Tyatyushkin, A.I., Konstruktivnye metody optimizatsii. Chast' 1. Lineinye zadachi (Constructive Optimization Methods. Part I: Linear Problems), Minsk: “Universitetskoe,” 1984.

    Google Scholar 

  14. Chernous'ko, F.L., Akulenko, L.D., and Sokolov, B.N., Upravlenie kolebaniyami (Oscillation Control), Moscow: Nauka, 1980.

    Google Scholar 

  15. Ruzhitskaya, E.A., Stabilization of Dynamic Systems under Constant Perturbations by Constrained Inertial Controls, Vestn. Belarus. Gos. Univ.: Ser. Mat., 1998, no. 3, pp. 12-17.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabasov, R., Kirillova, F.M. & Ruzhitskaya, E.A. The Classical Regulation Problem: Its Solution by Optimal Control Methods. Automation and Remote Control 62, 875–885 (2001). https://doi.org/10.1023/A:1010237317714

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010237317714

Keywords

Navigation