Automation and Remote Control

, Volume 62, Issue 4, pp 548–556 | Cite as

On Asymptotic Equivalence of the Solutions of Some Volterra Difference Equations

  • V. B. Kolmanovskii


Conditions for boundedness, stability in the first approximation, and asymptotic equivalence of the solutions of discrete-time Volterra equations were presented.


Mechanical Engineer System Theory Difference Equation Volterra Equation Asymptotic Equivalence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Volterra Equations and Applications, Corduneanu, C., Ed., Gordon and Breach, 2000.Google Scholar
  2. 2.
    Bukhgeim, A.L., Uravneniya Volterra i obratnye zadachi (Volterra Equations and Inverse Problems), Novosibirsk: Nauka, 1983.Google Scholar
  3. 3.
    Leray, J., Theorie des points fixes, indice totale et nombre de Lefschetz, Bull. Soc. Math. France, 1959, no. 87, pp. 221–233.Google Scholar
  4. 4.
    Krasnosel'skii, M.A. and Zabreiko, P.P., Geometricheskie metody nelineinogo analiza (Geometrical Methods of Nonlinear Analysis), Moscow: Nauka, 1975. Translated into English under the title Geometrical Methods of Nonlinear Analysis, Berlin: Springer, 1984, vol. 263.Google Scholar
  5. 5.
    Spravochnaya matematicheskaya biblioteka. Funktsional'nyi analiz (Reference Mathematical Library. Functional Analysis), Kreik, S.G., Ed., Moscow: Nauka, 1972.Google Scholar
  6. 6.
    Lakshmikantham, V. and Trigiante, D., Theory of Difference Equations, Boston: Academic, 1988.Google Scholar
  7. 7.
    Levinson, N., The Asymptotic Behavior of System of Linear Differential Equations, Am. J. Math., 1946, no. 68, pp. 1–6.Google Scholar
  8. 8.
    Brauer, F., Nonlinear Differential Equations with Forcing Terms, Proc. Am. Soc., 1964, nos. 15, 5, pp. 758–765.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • V. B. Kolmanovskii
    • 1
  1. 1.Moscow State Institute of Electronics and MathematicsMoscowRussia

Personalised recommendations