Advertisement

Automation and Remote Control

, Volume 62, Issue 8, pp 1312–1322 | Cite as

A Multiserver Retrial Queueing System with Batch Markov Arrival Process

  • V. I. Klimenok
Article

Abstract

A sufficient condition for a BMAP/M/N system to have a stationary state probability distribution and an algorithm for computing this distribution are investigated.

Keywords

Mechanical Engineer Probability Distribution Stationary State System Theory State Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Combèe, M., Queueing Models with Dependence Structures, Amsterdam: CWI, 1994.Google Scholar
  2. 2.
    Lucantoni, D.M., New Results on the Single-Server Queue with a Batch Markovian Arrival Process, Commun. Statist. Stoch. Models, 1991, vol. 7, pp. 1-46.Google Scholar
  3. 3.
    Neuts, M. and Lucantoni, D., Some Steady-State Distribution for the MAP/SM/1 Queue, Commun. Statist. Stoch. Models, 1994, vol. 10, pp. 575-598.Google Scholar
  4. 4.
    Bocharov, P.P., Pechinkin, A.V., and Phong, N.K., Steady-State Probabilities of the BMAP/G/1/r Retrial System with Preemptive Service of Primary Calls, Avtom. Telemekh., 2000, no. 8, pp. 68-78.Google Scholar
  5. 5.
    Bocharov, P.P. and Pechinkin, A.V., Teoriya massovogo obsluzhivaniya (Queueing Theory), Moscow: Ross. Univ. Druzhby Naridov, 1995.Google Scholar
  6. 6.
    Pechinkin, A.V., A Queueing System with Markov Arrival Process and Random Choice of Customers from Queue for Service, Avtom. Telemekh., 2000, no. 9, pp. 90-96.Google Scholar
  7. 7.
    Falin, G.I. and Templeton, J.G.C., Retrial Queues, London: Chapman, 1997.Google Scholar
  8. 8.
    Kulkarni, V.G. and Liang, H.M., Retrial Queues Revisited, in: Frontiers in Queueing: Models and Applications in Science and Engineering, Boca Raton: CRC Press, 1997, pp. 19-34.Google Scholar
  9. 9.
    Artalejo, J.R., Accessible Bibliography on Retrial Queues, Math. Comput. Model, 1999, vol. 30, pp. 223-233.Google Scholar
  10. 10.
    Diamond, J.E. and Alfa, A.S., The MAP/PH/1 Retrial Queue, Commun. Statist. Stoch. Models, 1998, vol. 14, pp. 1151-1177.Google Scholar
  11. 11.
    Choi, B.D. and Chang, Y., MAP 1 , MAP 2 /M/C Retrial Queue with Retrial Group of Finite Capacity and Geometric Loss, Math. Comput. Model, 1999, vol. 30, pp. 99-114.Google Scholar
  12. 12.
    Dudin, A.N. and Klimenok, V.I., Queueing System BMAP/G/1 with Repeated Calls, Math. Comput. Model, 1999, vol. 30, pp. 115-128.Google Scholar
  13. 13.
    Dudin, A.N. and Klimenok, V.I., A Retrial BMAP/SM/1 System with Linear Repeated Requests, Queueing Systems, 2000, vol. 34, pp. 47-66.Google Scholar
  14. 14.
    Dudin, A.N. and Klimenok, V.I., BMAP/SM/1 Model with Markov Modulated Retrials, TOP, 1999, vol. 7, pp. 267-278.Google Scholar
  15. 15.
    Dudin, A.N. and Klimenok, V.I., Sistemy massovogo obsluzhivaniya s korrelirovannymi potokami (Queue Systems with Correlated Inputs), Minsk: Belaruss. Gos. Univ., 2000.Google Scholar
  16. 16.
    Stepanov, S.N., Chislennye metody rascheta sistem s povtornymi vyzovami (Numerical Methods of Computing Retrial Systems), Moscow: Nauka, 1983.Google Scholar
  17. 17.
    Neuts, M. and Rao, B., Numerical Investigation of a Multiserver Retrial Model, Queueing Systems, 1990, vol. 7, pp. 169-189.Google Scholar
  18. 18.
    Diamond, J.E. and Alfa, A.S., Matrix Analytic Methods for a Multiserver Retrial Queue with Buffer, TOP, 1999, vol. 7, pp. 249-266.Google Scholar
  19. 19.
    Lucantoni, D.M. and Ramaswami, V., An Efficient Algorithm for Solving Nonlinear Matrix Equations arising in Phase-Type Queues, Commun. Statist. Stoch. Models, 1985, vol. 1, pp. 29-51.Google Scholar
  20. 20.
    Dudin, A.N. and Klimenok, V.I., Multidimensional Quasitoeplitz Markov Chains, J. Appl. Math. Stoch. Anal., 1999, vol. 12, pp. 393-415.Google Scholar
  21. 21.
    Neuts, M., Structured Stochastic Matrices of M/G/1 Type and Their Applications, New York: Marcel Dekker, 1989.Google Scholar
  22. 22.
    Gail, H., Hantler, S., and Taylor B., Spectral Analysis of M/G/1 and G/M/1 Type Markov Chains, Adv. Appl. Probab., 1996, vol. 28, pp. 114-165.Google Scholar
  23. 23.
    Klimenok, V.I., A Condition for the Existence of a Steady-State in Queue Systems with Markov Arrivals and Retrials, Vesti Natsion. Akad. Nauk Belaruss., 2000, no. 3, pp. 128-132.Google Scholar
  24. 24.
    Bellman, R.E., Introduction to Matrix Analysis, New York: McGraw Hill, 1960. Translated under the title Vvedenie v teoriyu matrits, Moscow: Nauka, 1969.Google Scholar
  25. 25.
    Dudin, A.N. and Klimenok, V.I., A Queueing System Operating in a Markov Synchronized Random Medium: Computation of Its Characteristics, Avtom. Telemekh., 1997, no. 1, pp. 74-84.Google Scholar
  26. 26.
    Kemeni, J., Shell, J., and Knapp, A., Denumerable Markov Chains, New York: Van Nostrand, 1966.Google Scholar
  27. 27.
    Dudin, A.N., Klimenok, V.I., Klimenok, I.A., et al., Software “SIRIUS+” for Evaluation and Optimization of Queues with BMAP-input, in: Matrix-Analytic Methods in Stochastic Models, New Jersey: Notable Publications, 2000, pp. 115-133.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • V. I. Klimenok
    • 1
  1. 1.Belarussian State UniversityMinskBelarus

Personalised recommendations