Advertisement

Automation and Remote Control

, Volume 62, Issue 4, pp 505–512 | Cite as

Estimates of the Real Structured Radius of Stability of Linear Dynamic Systems

  • N. A. Bobylev
  • A. V. Bulatov
  • Ph. Diamond
Article

Abstract

A question is examined as to estimates of the norms of perturbations of a linear stable dynamic system, under which the perturbed system remains stable in a situation where a perturbation has a fixed structure.

Keywords

Dynamic System Mechanical Engineer System Theory Stable Dynamic Real Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Hinrichsen, D. and Pritchard, A.J., Robustness Measures for Linear State Space Systems under Complex and Real Parameter Perturbations, in Perspectives in Control Theory, Jakubeczyk, B. et al., Eds., Boston: Birkhauser, 1990.Google Scholar
  2. 2.
    Hinrichsen, D. and Pritchard, A.J., Real and Complex Stability Radii. A Survey, Progress Syst. Control Theory, 1990, vol. 6, pp. 119–162.Google Scholar
  3. 3.
    Bobylev, N.A., Emel'yanov, S.V., and Korovin, S.K., Estimates of Perturbations of Stable Matrices, Avtom. Telemekh., 1998, no. 4, pp. 15–24.Google Scholar
  4. 4.
    Bobylev, N., Bulatov, A., and Diamond, Ph., An Easily Computable Estimate for the Real Unstructured F-Stability Radius, Int. J. Control, 1999, vol. 72, no. 6, pp. 493–500.Google Scholar
  5. 5.
    Brickmann, L., On the Field of Values of a Matrix, Proc. AMS, 1961, vol. 15, pp. 61–66.Google Scholar
  6. 6.
    Demidovich, B.P. and Maron, I.A., Osnovy vychislitel'noi matematiki (Basics of Computational Mathematics), Moscow: Nauka, 1963.Google Scholar
  7. 7.
    Vasyl'ev, F.P., Chislennye metody resheniya ekstremal'nykh zadach (Numerical Methods of the Solution of Extremal Problems), Moscow: Nauka, 1980.Google Scholar
  8. 8.
    Bobylev, N.A. and Bulatov, A.V., On the Robust Stability of Linear Discrete Systems, Avtom. Telemekh., no. 8, pp. 138–145.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • N. A. Bobylev
    • 1
  • A. V. Bulatov
    • 1
  • Ph. Diamond
    • 2
  1. 1.Trapeznikov Institute of Control SciencesRussian Academy of SciencesMoscowRussia
  2. 2.University of QueenslandBrisbaneAustralia

Personalised recommendations