Multimedia Tools and Applications

, Volume 7, Issue 1–2, pp 9–36 | Cite as

An Approach to a Content-Based Retrieval of Multimedia Data

  • Giuseppe Amato
  • Giovanni Mainetto
  • Pasquale Savino


This paper presents a data model tailored for multimedia data representation, along with the main characteristics of a Multimedia Query Language that exploits the features of the proposed model. The model addresses data presentation, manipulation and content-based retrieval. It consists of three parts: a Multimedia Description Model, which provides a structural view of raw multimedia data, a Multimedia Presentation Model, and a Multimedia Interpretation Model which allows semantic information to be associated with multimedia data. The paper focuses on the structuring of a multimedia data model which provides support for content-based retrieval of multimedia data. The Query Language is an extension of a traditional query language which allows restrictions to be expressed on features, concepts, and the structural aspects of the objects of multimedia data and the formulation of queries with imprecise conditions. The result of a query is an approximate set of database objects which partially match such a query.

multimedia information systems information storage and retrieval data modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Alp Aslandogan, C. Thier, C.T. Yu, C. Liu, and K.R. Nair. “Design, Implementation and Evaluation of SCORE (a System for COntent based REtrieval of Pictures),” in Proceedings of the Eleventh International Conference on Data Engineering (IDCE), Taipei, Taiwan, March 6-10 1995, pp. 280–287.Google Scholar
  2. 2.
    M.P. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and S. Zdonik, “The Object-Oriented Database System Manifesto,” in Proceedings of the First DOOD International Conference, Japan, 1989, pp. 40–57.Google Scholar
  3. 3.
    J.R. Bach, C. Fuller, A. Gupta, A. Hampapur, B. Horowitz, R. Humphrey, R. Jain, and C-F. Shu, “The Virage image search engine: An open framework for image management,” in Proceedings of the SPIE 96, 1996.Google Scholar
  4. 4.
    J. Banerjee, H. Chou, J.F. Garza, W. Kim, D. Woelk, N. Ballou, and H. Kim, “Data Model Issues for Object-Oriented Applications,” ACM Transactions on Office Information Systems, 5(1):3–26, 1987.CrossRefGoogle Scholar
  5. 5.
    N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R*-Tree: an Efficient and Robust Access Method for Points and Rectangles,” ACM SIGMOD, pp. 322–331, May 1990.Google Scholar
  6. 6.
    P.B. Berra, F. Golshani, R. Mehrotra, and O.R. Liu-Sheng, “Guest editors' introduction: Multimedia Information Systems,” IEEE Transactions on Knowledge and Data Engineering, 5(4):545–550, Aug. 1993.Google Scholar
  7. 7.
    S. Brin, “Near Neighbor Search in Large Metric Space,” in Proceedings of the 21st VLDB International Conference, Zurich, Switzerland, September 1995, pages 574–584.Google Scholar
  8. 8.
    A.F. Cardenas, I.T. Ieong, R.K. Taira, R. Barker, and C.M. Breant, “The Knowledge-Based Object-Oriented PICQUERY+ Language,” IEEE Transactions on Knowledge and Data Engineering, 5(4):644–657, Aug. 1993.CrossRefGoogle Scholar
  9. 9.
    M.J. Carey, D.J. DeWitt, K. Dittrich, J.E. Richardson, and E.J. Shekita, Storage Management for Objects in Exodus, pp. 341–369, 1989.Google Scholar
  10. 10.
    R.G.G. Cattel, “The Object Database Standard: ODMG-93, Release 1.2,” Norwell, MA, 1996.Google Scholar
  11. 11.
    S-K. Chang and K-S. Fu, “Picture Query Languages for Pictorial Data-Base Ssystems,” IEEE Computer, 14(11):23–42, November 1981.Google Scholar
  12. 12.
    S-F. Chang and D.G. Messerschmitt, “Transform Coding of arbitrarily-shaped Image Segments,” in Proceedings of the ACM Conference on Multimedia, 1993.Google Scholar
  13. 13.
    T. Chiueh, “Content-Based Image Indexing,” in Proceedings of the 20th VLDB International Conference, Santiago, Chile, September 1994, pp. 582–593.Google Scholar
  14. 14.
    P. Ciaccia, F. Rabitti, and P. Zezula, “A data structure for Similarity Search in Multimedia Databases,” in Proc. Of the 9th ERCIM Database Research Group Workshop on Multimedia Databases, Darmstadt, 18-19 March 1996. ERCIM.Google Scholar
  15. 15.
    W.B. Croft and P. Savino, “Implementing Ranking Strategies using Text Signatures,” ACM Transactions on Office Information Systems, 6(1):42–62, 1988.CrossRefGoogle Scholar
  16. 16.
    Y.F. Day, S. Dagtas, M. Iino, A. Khokhar, and A. Ghafoor, “Object-Oriented Conceptual Modeling of Video Data,” in Proc. of the 11th Int. Conf. on Data Engineering, Taiwan, 1995, pp. 401–408.Google Scholar
  17. 17.
    N. Dimitrova and F. Golshani, “Rx for Semantic Video Database Retrieval,” in Proceedings of the ACM Multimedia' 94, 1994.Google Scholar
  18. 18.
    C. Faloutsos, “Access Methods for Text,” ACM Computing Surveys, 17(1):49–74, March 1985.CrossRefGoogle Scholar
  19. 19.
    M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker, “Query by image and video content: The QBIC system,” IEEE Computer, 28(9):23–32, September 1995.Google Scholar
  20. 20.
    D. Gemmel, H. M. Vin, D. D. Kandlur, P. V. Rangan, and L. A. Rowe, “Multimedia Storage Servers: A Tutorial,” IEEE Computer, May 1995, pp. 40–49.Google Scholar
  21. 21.
    A. Ghafoor, “Multimedia Database Management: Perspectives and Challenges,” in Proc. Advances in Databases, 13th British National Conf. on Databases, volume 5, July 12-14, 1995, pp. 12–23.Google Scholar
  22. 22.
    S. Gibbs, B. Christian, and D. Tsichritzis, “Data Modeling of Time-Based Media,” in Proc. Of ACM SIGMOD Conference on Management of Data, Minneapolis, Minnesota USA, 1994, pp. 92–102.Google Scholar
  23. 23.
    V.N. Gudivada and V.V. Raghavan, “Content-based Image Retrieval Systems: Guest Editors' Introduction,” IEEE Computer, September 199, pp. 18–22.Google Scholar
  24. 24.
    A. Gupta, T. Weymouth, and R. Jain, “Semantic Queries with Pictures: The VIMSYS Model,” Proc. of 17th International Conference on Very Large Data Bases, September 1991, pp. 69–79.Google Scholar
  25. 25.
    A. Guttman, “R-trees: A Dynamic Index Structure for Spatial Searching,” in Proceedings of the 1984 ACM SIGMOD International Conference on Management of Data, Boston, MA, June 1984, pp. 47–57.Google Scholar
  26. 26.
    R. Jain, Infoscopes: Multimedia Information Systems, pp. 217–254, 1996.Google Scholar
  27. 27.
    K-I. Lin, H.V. Jagadish, and C. Faloutsos, “The TV-Tree-an Index Structure for High-Dimensional Data,” VLDB Journal, 3:517–542, October 1994.Google Scholar
  28. 28.
    T.D.C. Little and A. Ghafoor. “Interval-Based Conceptual Models for Time-Dependent Multimedia Data,” IEEE Transactions on Knowledge and Data Engineering, 5(4):551–562, August 1993.CrossRefGoogle Scholar
  29. 29.
    S. Marcus and V.S. Subrahmanian, “Foundations of Multimedia Information Systems,” Journal of the ACM, 1996.Google Scholar
  30. 30.
    J. Nievergelt, H. Hinterberger, and K.C. Sevcik, “The Grid File: an Adaptable, Symmetric Multikey File Structure,” ACM TODS, 9(1):38–71, March 1984.Google Scholar
  31. 31.
    E. Oomoto and K. Tanaka. “OVID: Design and Implementation of a Video-Object Database System,” IEEE Transactions on Knowledge and Data Engineering, 5(4):629–643, August 1993.CrossRefGoogle Scholar
  32. 32.
    A. Pentland, R.W. Picard, and S. Sclaroff, “Photobook: Content-based Manipulation in Image Databases,” International Journal of Computer Vision, Fall 1995.Google Scholar
  33. 33.
    E.G. Petrakis and C. Faloutsos, “Similarity Searching in Large Image Databases,” IEEE Transactions on Knowledge and Data Engineering, 1996.Google Scholar
  34. 34.
    E.G. Petrakis and S.C. Orphanoudakis, “Methodology for the Representation, Indexing and Retrieval of Images by Content,” Image and Vision Computing, 11(8):504–521, Oct. 1993.CrossRefGoogle Scholar
  35. 35.
    F. Rabitti and P. Savino, “Image Query Processing Based on Multi-Level Signatures,” in Proceedings of ACMSIGIR' 91, International Conference on Research and Development in Information Retrieval, Chicago, Illinois, 13-16 October 1991, pp. 305–314.Google Scholar
  36. 36.
    F. Rabitti and P. Savino, “An Information Retrieval Approach for Image Databases,” in Proceedings of 18th VLDB International Conference, Vancouver, Canada, August 1992, pp. 574–584.Google Scholar
  37. 37.
    G. Salton, Automatic Text Processing-the Transformation, Analysis and Retrieval of Information by Computer, Addison-Wesley: Reading, MA, 1989.Google Scholar
  38. 38.
    T.K. Sellis, N. Roussopoulos, and C. Faloutsos, “The R+-tree: A Dynamic Index for Multi-Dimensional Objects,” in Proceedings of the 13th VLDB International Conference, Brighton, England, September 1987, pp. 507–518.Google Scholar
  39. 39.
    J.R. Smith and S-F. Chang, “Tools and Techniques for Color Image Retrieval,” in Proceedings of the SPIE 96, 1995.Google Scholar
  40. 40.
    J.K. Wu, A.D. Narasimhalu, B.M. Mehtre, C.P. Lam, and Y.J. Gao, “CORE: A Content-based Retrieval Engine for Multimedia Information Systems,” Multimedia Systems, 3(1):25–41, Feb. 1995.Google Scholar
  41. 41.
    A. Yoshitaka, S. Kishida, M. Hirakawa, and T. Ichikawa, “Knowledge-assisted Content-Based Retrieval for Multimedia Databases,” IEEE Multimedia, pp. 12–20, 1994.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Giuseppe Amato
    • 1
  • Giovanni Mainetto
    • 2
  • Pasquale Savino
    • 3
  1. 1.Istituto di Elaborazione della Informazione del C.N.R.Pisa -Italy
  2. 2.Istituto CNUCE del C.N.R.Pisa -Italy
  3. 3.Istituto di Elaborazione della Informazione del C.N.R.Pisa -Italy

Personalised recommendations