Skip to main content
Log in

Pericentric satellite DNA and molecular phylogeny in Acomys (Rodentia)

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Satellite DNAs (stDNAs) of four Acomys species (spiny-mice), A. cahirinus, A. cineraceus, A. dimidiatus and A. russatus, belong to closely related sequence families. Monomer sizes range from 338 to 364 bp. Between-species sequence identity was from 81.0% to 97.2%. The molecular phylogeny of the sequences helps to clarify the taxonomy of this ‘difficult’ group. The A. dimidiatus genome contains about 60 000 repeats. According to the restriction patterns, repeats are arranged in tandem. The stDNA maps to the centromeric heterochromatin of most autosomes, both acrocentric and metacentric, but appears to be absent in the centromeric region of Y chromosomes. A well-conserved centromere protein B (CENP-B) box is present in the stDNA of A. russatus while it is degenerated in the other species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso S, Minty A, Bourlet Y, Buckingham M (1986) Comparison of three actin-coding sequences in the mouse: evolutionary relationships between the actin genes of warm blooded vertebrates. J Mol Evol 23: 11-22.

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403-10.

    Article  PubMed  CAS  Google Scholar 

  • Arnason U, Manolova Y, Manolov G, Bregula U, Levan A (1986) Satellite DNA in the three Cbands of an unusual mouse marker chromosome-A model of chromosomal evolution. Exp Cell Res 164: 256-260.

    Article  PubMed  CAS  Google Scholar 

  • Benson DA, Boguski MS, Lipman DJ, Ostell J, Ouellette BF (1998) GenBank. Nucl Acids Res 26: 1-7.

    Article  PubMed  CAS  Google Scholar 

  • Choo KHA (1997) The Centromere. Oxford: Oxford University Press.

    Google Scholar 

  • Fry K, Salser W (1977) Nucleotide sequences of Hs-alpha satellite DNA from kangaroo rat, Dipodomys ordii, and characterization of similar sequences in other rodents. Cell 12: 1069-1084.

    Article  PubMed  CAS  Google Scholar 

  • Gamperl R, Ehmann CH, Bachmann K (1982) Genome size and heterochromatin variation in rodents. Genetica 58: 199-212.

    Article  CAS  Google Scholar 

  • Haaf T, Mater AG, Wienberg J, Ward DC (1995) Presence and abundance of CENP-B box sequences in great ape subsets of primate-specific α-satellite DNA. J Mol Evol 41: 487-491.

    Article  PubMed  CAS  Google Scholar 

  • Hörz W, Altenburger W (1981) Nucleotide sequence of mouse satellite DNA. Nucl Acids Res 9: 683-696.

    PubMed  Google Scholar 

  • Hörz W, Zachau HG (1977) Characterization of distinct segments in mouse satellite DNA by restriction nucleases. Eur J Biochem 73: 383-392.

    Article  PubMed  Google Scholar 

  • John B, Miklos GLG (1979) Functional aspects of satellite DNA in heterochromatin. Inter Rev Cytol 58: 1-114.

    CAS  Google Scholar 

  • Kipling D, Mitchell AR, Masumoto H, Wilson HE, Nicol L, Cooke H (1995) CENP-B binds a novel centromeric sequence in the asian mouse Mus caroli. Mol Cell Biol 15: 4009-4020.

    PubMed  CAS  Google Scholar 

  • Kipling D, Warburton PE (1997) Centromeres, CENP-B and Tigger too. Trends Genet 13: 141-145.

    Article  PubMed  CAS  Google Scholar 

  • Kunze B, Weichenhan D, Virks P, Traut W, Winking H (1996) Copy numbers of a clustered long-range repeat determine C-band staining. Cytogenet Cell Genet 73: 86-91.

    PubMed  CAS  Google Scholar 

  • Lima-de-Faria A, Arnason U, Widegren B et al. (1984) Conservation of repetitive DNA sequences in deer species studied by southern blot transfer. J Mol Evol 20: 17-24.

    Article  PubMed  CAS  Google Scholar 

  • López CC, Edström J-E (1998) Interspersed centromeric element with a CENP-B box-like motif in Chironomus pallidivittatus. Nucl Acids Res 26: 4168-4172.

    Article  PubMed  Google Scholar 

  • Masumoto H, Masukata H, Muro Y, Nozaki N, Okazaki T (1989) A human centromere Antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J Cell Biol 109: 1963-1973.

    Article  PubMed  CAS  Google Scholar 

  • Masumoto H, Yoda K, Ikeno M, Kitagawa K, Muro Y, Okazaki T (1993) Properties of CENP-B and its target sequence in a satellite DNA. NATO ASI Ser H 72: 31-43.

    CAS  Google Scholar 

  • Musser GG, Carleton MD (1993) Rodentia: Sciurognathi: Muridae: Murinae. In: Wilson DE, Reeder DAM, eds. Mammalian species of the world — A taxonomic and geographic reference. Washington, UK: Smithsonian Institution Press, pp. 501-755.

    Google Scholar 

  • Plass C, Weichenhan D, Kunze B et al. (1995) A member of the mouse LRR transcript family with homology to the human Sp100 gene. Hereditas 122: 245-256.

    Article  PubMed  CAS  Google Scholar 

  • Redi CA, Garagna S, Della Valle G et al. (1990) Differences in the organization and chromosomal allocation of satellite DNA between the European long tailed house mice Mus domesticus and Mus musculus. Chromosoma 99: 11-17.

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406-425.

    PubMed  CAS  Google Scholar 

  • Schweizer D (1981) Counterstain-enhanced chromosome banding. Hum Genet 57: 1-14.

    PubMed  CAS  Google Scholar 

  • Singer MF (1982) Highly repeated sequences in mammalian genomes. Int Rev Cytol 76: 67-112.

    Article  PubMed  CAS  Google Scholar 

  • Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75: 304-306.

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucl Acids Res 22: 4673-4680.

    PubMed  CAS  Google Scholar 

  • Volobouev VT, Tranier M, Dutrillaux B (1991) Chromosome evolution in the genus Acomys: Chromosome banding analysis of Acomys cf. dimidiatus (Rodentia, Muridae). Bonn Zool Beitr 42: 253-260.

    Google Scholar 

  • Volobouev V, Vogt N, Viegas-Pequignot E, Malfoy B, Dutrillaux B (1995) Characterization and chromosomal location of two repeated DNAs in three Gerbillus species. Chromosoma 104: 252-259.

    PubMed  CAS  Google Scholar 

  • Volobouev V, Gautun JC, Sicard B, Trainer M (1996a) The chromosome complement of Acomys spp. (Rodentia, Muridae) from Oursi, Burkina Faso — the ancestral karyotype of the cahirinusdimidiatus group? Chromosome Res 4: 526-530.

    Article  PubMed  CAS  Google Scholar 

  • Volobouev VT, Guatun JC, Tranier M (1996b) Chromosome evolution in the genus Acomys (Rodentia, Muridae): Chromosome banding analysis of Acomys cahirinus. Mammalia 2: 217-222.

    Article  Google Scholar 

  • Weichenhan D, Kunze B, Zacker S, Traut W, Winking H (1997) Structure and expression of the murine Sp100 nuclear dot gene. Genomics 43: 298-306.

    Article  PubMed  CAS  Google Scholar 

  • Wong AKC, Rattner JB (1988) Sequence organization and cytological localization of the minor satellite of mouse. Nucl Acids Res 16: 11645-11661.

    PubMed  CAS  Google Scholar 

  • Wu Z, Liu WX, Murphy C, Gall J (1990) Satellite 1 DNA sequence from genomic DNA of the giant panda Ailuropoda malanoleuca. Nucl Acids Res 18: 1054.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunze, B., Traut, W., Garagna, S. et al. Pericentric satellite DNA and molecular phylogeny in Acomys (Rodentia). Chromosome Res 7, 131–142 (1999). https://doi.org/10.1023/A:1009251202340

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009251202340

Navigation