Skip to main content
Log in

Argatroban Increases Nitric Oxide Levels in Patients with Peripheral Arterial Obstructive Disease: Placebo-Controlled Study

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Abstract. Intravenous argatroban infusion therapy is widely used for the restoration of peripheral microcirculation in patients with peripheral arterial obstructive disease (PAOD). We investigated the effect of argatroban infusion therapy on plasma levels of nitric oxide (NO) and nitrosylhemoglobin (HbNO) in patients with PAOD compared with a placebo-treated PAOD group. The chemiluminescence method was used to determine plasma NO and HbNO. Argatroban was administered as a continuous intravenous infusion for 60 minutes and repeated daily over a period of 2 weeks in 10 patients with PAOD. Treatment significantly improved the clinical signs and symptoms. Serial thermograms showed a 1–2°C rise in the temperature of the affected legs in all patients immediately after intravenous argatroban infusion therapy. Enhancement of the peripheral circulation was maintained after the end of argatroban infusion for up to 90 minutes despite elimination of argatroban from the circulation. Furthermore, there was a progressive and significant increase in the mean concentration of plasma NO in PAOD patients after commencement of argatroban infusion (baseline, 58.0 ± 13.7;90 minutes after infusion, 65.7 ± 13.4 µM; P < 0.01). HbNO significantly increased from a baseline value of 1063 ± 126 to 1460 ± 250 nM at 30 minutes after infusion (P < 0.01). However, the level of HbNo decreased thereafter, although it remained significantly elevated, even at 90 minutes after the end of argatroban infusion. Our results suggest that argatroban may lead to increased HbNO and plasma NO, and this may contribute to the improved microcirculation in PAOD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kikumoto R, Tamao Y, Tezuka T, et al. Selective inhibition of thrombin by (2R,4R)-4-methyl-1-[N2-[(3-methyl-1,2,3,4-tetrahydro-8-quinolinyl++ +) sulfonyl]-l-arginyl)]-2-piperidinecarboxylic acid. Biochemistry 1984;23:85–90.

    PubMed  Google Scholar 

  2. Green D, Ts'ao C, Reynolds N, Kahn D, Kohl H, Cohen I. In vitro studies of a new synthetic thrombin inhibitor. Thromb Res 1985;37:145–153.

    Article  PubMed  Google Scholar 

  3. Hara H, Tamao Y, Kikumoto R, Okamoto S. Effect of a synthetic thrombin inhibitor MCI-9038 on experimental models of disseminated intravascular coagulation in rabbits. Thromb Haemost 1987;57:165–170.

    PubMed  Google Scholar 

  4. Jang IK, Gold HK, Ziskind AA, Leinbach RC, Fallon JT, Collen D. Prevention of platelet-rich arterial thrombosis by selective thrombin inhibition. Circulation 1990;81:219–225.

    PubMed  Google Scholar 

  5. Jang IK, Gold HK, Leinbach RC, Fallon JT, Collen D. In vivo thrombin inhibition enhances and sustains arterial recanalization with recombinant tissue-type plasminogen activator. Circ Res 1990;67:1552–1561.

    PubMed  Google Scholar 

  6. Imura Y, Stassen JM, Collen D. Comparative antithrombotic effects of heparin, recombinant hirudin and argatroban in a hamster femoral vein platelet-rich mural thrombosis model. J Pharmacol Exp Ther 1992;261:895–898.

    PubMed  Google Scholar 

  7. Kumon K, Tanaka K, Nakajima N, Naito Y, Fujita T. Anticoagulation with a synthetic thrombin inhibitor after cardiovascular surgery and for treatment of disseminated intravascular coagulation. Crit Care Med 1984;12:1039–1043.

    PubMed  Google Scholar 

  8. Kobayashi S, Kitani M, Yamaguchi S, Suzuki T, Okada K, Tsunematsu T. Effects of an antithrombotic agent (MD-805) on progressing cerebral thrombosis. Thromb Res 1989;53: 305–317.

    Article  PubMed  Google Scholar 

  9. Clarke RJ, Mayo G, FitzGerald GA, Fitzgerald DJ. Combined administration of aspirin and a specific thrombin inhibitor in man [see comments]. Circulation 1991;83:1510–1518.

    PubMed  Google Scholar 

  10. Matsuo T, Kario K, Matsuda S, Yamaguchi N, Kakishita E. Effect of thrombin inhibitor on patients with peripheral arterial obstructive disease: A multicenter clinical trial of argatroban. J Thromb Thrombolys 1995;5:131–136.

    Google Scholar 

  11. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987;327:524–526.

    Article  PubMed  Google Scholar 

  12. Wagner DA, Young VR, Tannenbaum SR. Mammalian nitrate biosynthesis: Incorporation of 15NH3 into nitrate is enhanced by endotoxin treatment. Proc Natl Sci USA 1983; 80:4518–4521.

    Google Scholar 

  13. Radomski MW, Palmer RM, Moncada S. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet 1987;2:1057–1058.

    Article  PubMed  Google Scholar 

  14. Hibbs JJ, Taintor RR, Vavrin Z, Rachlin EM. Nitric oxide; A cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun 1988;157:87–94 [published erratum appears in Biochem Biophys ResCommun1989;158:624].

    PubMed  Google Scholar 

  15. Lancaster JJ. Simulation of the diffusion and reaction of endogenously produced nitric oxide. Proc Natl Acad Sci USA 1994;91:8137–8141.

    PubMed  Google Scholar 

  16. Wennmalm A, Benthin G, Edlund A, et al. Metabolism and excretion of nitric oxide in humans. An experimental and clinical study. Circ Res 1993;73:1121–1127.

    PubMed  Google Scholar 

  17. Fontaine R, Kim M, Kieny S. Die chirurgische Bechandlung der peripheren durchblutungsstorungen. Helv Chir Acta 1954;21:499–509.

    PubMed  Google Scholar 

  18. Ueki Y, Miyake S, Tominaga Y, Eguchi K. Increased nitric oxide levels in patients with rheumatoid arthritis. J Rheumatol 1996;23:230–236.

    PubMed  Google Scholar 

  19. Braman RS, Hendrix SA. Nanogram nitrite and nitrate determination in environmental and biological materials by vanadium (III) reduction with chemiluminescence detection. Anal Chem 1989;61:2715–2718.

    PubMed  Google Scholar 

  20. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxations of the arterial smooth muscle by acetylcholine. Nature 1980;286:373–376.

    Article  Google Scholar 

  21. Furchgott RF. The role of endothelium in the responses of vascular smooth muscle to drugs. Annu Rev Pharmacol Toxicol 1984;24:175–197.

    Article  PubMed  Google Scholar 

  22. Chin JH, Azhar S, Hoffman BB. Inactivation of endothelial derived relaxing factor by oxidized lipoproteins. J Clin Invest 1992;89:10–18.

    PubMed  Google Scholar 

  23. Drexler H, Zeiher AM, Meinzer K, Just H. Correction of endothelial dysfuction in coronary microcirculation of hypercholesterolaemic patients by L-arginine. Lancet 1991; 338:1546–1550.

    PubMed  Google Scholar 

  24. Yamamoto T. Effect of argatroban on flap survival length. Nippon Ika Daigaku Zasshi 1995;62:351–359 (in Japanese).

    PubMed  Google Scholar 

  25. Soda T, Ogura K. A case of Fournier's gangrene with healing accelerated by argatroban. Hinyokika Kiyo 1996;42:981–982 (in Japanese).

    PubMed  Google Scholar 

  26. Wennmalm A, Benthin G, Petersson AS. Dependence of the metabolism of nitric oxide (NO) in healthy human whole blood on the oxygenation of its red cell haemoglobin. Br J Pharmacol 1992;106:507–508.

    PubMed  Google Scholar 

  27. Donaldson MC, Matthews ET, Hadjimichael J, Rickles FR. Markers of thrombotic activity in arterial disease. Arch Surg 1987;122:897–900.

    PubMed  Google Scholar 

  28. Lowe GD. Blood rheology in arterial disease. Clin Sci 1986; 71:137–146.

    PubMed  Google Scholar 

  29. Nash GB, Thomas PRS, Dormandy JA.Abnormal flow properties of white cells in patients with severe ischaemia of the leg. Br Med J 1988;296:1699–1701.

    Google Scholar 

  30. Lassila R, Pettonen S, Lepantalo M, Saarinen O, Kauhanen P, Manninen V. Severity of peripheral atherosclerosis is associated with fibrinogen and degradation of cross-linked fibrin. Atheroscler Thromb 1993;13:1738–1742.

    Google Scholar 

  31. Kosugi T, Masuda Y, Kinjoh K, Yamashita S, Sunagawa M, Nakamura M. Effect of argatroban on the formation of artificial thrombus on dogs. Int J Tissue React 1995;17:109–116.

    PubMed  Google Scholar 

  32. Ueki Y, Nagata M, Miyake S, Tominaga Y. Effect of a selective thrombin inhibitor argatroban on the immune system in maintenance hemodialysis patients with arteriosclerosis obliterans. Rinshotokennkyu 1994;71:213–215 (in Japanese).

    Google Scholar 

  33. Kubes P, Suzuki M, Granger DN. Nitric oxide: An endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 1991;88:4651–4655.

    PubMed  Google Scholar 

  34. Kruszyna R, Kruszyna H, Smith RP, Thron CD, Wilcox DE. Nitrite conversion to nitric oxide in red cells and its stabilization as a nitrosylated valency hybrid of hemoglobin. J Pharmacol Exp Ther 1987;241:307–313.

    PubMed  Google Scholar 

  35. Stamler JS, Jia L, Eu JP, et al. Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science 1997;276:2034–2037.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ueki, Y., Matsumoto, K., Kizaki, Y. et al. Argatroban Increases Nitric Oxide Levels in Patients with Peripheral Arterial Obstructive Disease: Placebo-Controlled Study. J Thromb Thrombolysis 8, 131–137 (1999). https://doi.org/10.1023/A:1008963118789

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008963118789

Navigation