Skip to main content
Log in

De novo adipogenesis for reconstructive surgery

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Autografting of lost soft tissue is an important subject of the plastic and reconstructive surgery and autograft of fat pads has been only technique for this goal. However, the results are disappointing because of absorption of the grafts with time. Adipoblasts or adipocyte precursor cells distribute widely in connective tissues and they can proliferate and mature into adipocytes even in the adult body. In experiments using mice, we found that de novo adipogenesis of endogenous precursor cells can be induced by injecting reconstituted basement membrane, Matrigel, supplemented with more than 1 ng/ml of bFGF. This adipogenesis was reproducibly induced by subcutaneous injection over the chest, lateral abdomen or head. Adipogenesis was induced even in ear cartilage or in muscle. To evaluate the possibility of future application of this de novo adipogenesis to plastic and reconstructive surgery, we have reviewed updated knowledge of the adipogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ailhaud G (1990) Extracellular factors, signaling pathways and differentiation of adipose precursor cells. Curr Opin Cell Biol 2: 1043–1049.

    Article  CAS  Google Scholar 

  • Aratani Y and Kitagawa Y (1988) Enhanced synthesis and secretion of type IV collagen and entactin during adipose conversion of 3T3-L1 cells and production of unorthodox laminin complex. J Biol Chem 263: 16163–16169.

    CAS  Google Scholar 

  • Billings E and May JW (1989) Historical review and present status of free fat graft autotransplantation in plastic and reconstructive surgery. Plast Reconst Surg 83: 368–381.

    Google Scholar 

  • Bircoll M and Novack BH (1987) Autologous fat transplantation employing liposuction techniques. Ann Plast Surg 18: 327–329.

    CAS  Google Scholar 

  • Birkenmeier EH, Gwynn B, Howard S, Jerry J, Gordon JI, Landschulz WE and Mcknight SL (1989) Tissue-specific expression, developmental regulation, and genetic mapping of the gene encoding CCAAT/enhancer binding protein. Genes Dev 3: 1146–1156.

    CAS  Google Scholar 

  • Brun RP, Tontonoz P, Forman BM, Ellis R, Chen J, Evans RM and Spiegelman BM (1996) Differential activation of adipogenesis by multiple PPAR isoforms. Genes Dev 10: 974–984.

    CAS  Google Scholar 

  • Bukowiecki LJ, Collet AJ, Follea N, Guay G, Jahjah L (1982) Brown adipose tissue hyperplasia: a fundamental mechanism of adaptation to cold and hyperphagia. Am J Physiol 242: E353-E359.

    CAS  Google Scholar 

  • Bukowiecki LJ (1986) Proliferation and differentiation of brown adipocytes from interstitial cells during cold acclimation. Am J Physiol 250: C880-C887.

    CAS  Google Scholar 

  • Cao Z, Umek RM and Mcknight SL (1991) Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev 5: 1538–1552.

    CAS  Google Scholar 

  • Cheneval D, Christy RJ, Geiman D, Cornelius P and Lane MD (1991) Cell-free transcription directed by the 422 adipose P2 gene promoter: Activation by the CCAAT/enhancer binding protein. Proc Natl Acad Sci USA 88: 8465–8469.

    Article  CAS  Google Scholar 

  • Descomb P and Schibler U (1991) A liver-enriched transcriptional activator protein LAP, and transcriptional inhibitory protein LIP, are translated from the same mRNA. Cell 67: 569–579.

    Article  Google Scholar 

  • Devchand PR, Keller H, Peters JM, Vazquez M, Gonxales FJ and Wahli W (1996) The PPAR α-leukotriene B4 pathway to inflammation control. Nature 382: 39–43.

    Article  Google Scholar 

  • Enerback S, Ohlsson BG, Samuelsson and Bjursell G (1992) Characterization of the human lipoprotein lipase (LPL) promoter: evidence of two cis-regulatory regions, LP-α and LP-β, of importance for the differentiation-linked induction of the LPL gene during adipogenesis. Mol Cell Biol 12: 4622–4633.

    CAS  Google Scholar 

  • Ellenbogen R (1986) Free autogenous pearl fat grafts in the face — A preliminary report of a rediscovered technique. Ann Plast Surg 16: 179–194.

    CAS  Google Scholar 

  • Eppley BL, Sidner RA, Platis JM and Sadove AM, Negrel R and Pfeiffer EF (1992) Bioactivation of free-fat transfers: a potential new approach to improving graft survival. Plast Reconstr Surg 90: 1022–1030.

    CAS  Google Scholar 

  • Ersek RA (1991) Transplantation of purified autologous fat: A 3-year follow-up is disappointing. Plast Reconstr Surg 87: 219–227.

    Article  CAS  Google Scholar 

  • Folkman J and Haudenschild C (1980) Angiogenesis in vitro. Nature 288, 551–556.

    Article  CAS  Google Scholar 

  • Folkman J, Klagsbrum M, Sasse J, Wadzinski M, Ingber D and Vlodavsky I (1988) A heparin-binding angiogenic protein-basic fibroblast growth factor-is stored within basement membrane. Am J Phyiol 130: 393–400.

    CAS  Google Scholar 

  • Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman BM and Evans RM (1995) 15-deoxy-Δ12,14-prostaglandin J2 is a ligand for the adipocyte determination factor PPARγ. Cell 83: 803–812.

    Article  CAS  Google Scholar 

  • Freytag SO, Paielli DL and Gilbert JD (1994) Ectopic expreesion of the CCAAT/enhancer-binding protein α promotes the adipogenic program in a variety of mouse fibroblastic cells. Genes Dev 8: 1654–1663.

    CAS  Google Scholar 

  • Geloen A, Collet AJ, Guay G and Bukowiecki LJ (1988) β-adrenergic stimulation of brown adipocyte proliferation. Am J Physiol 254: C175-C182.

    CAS  Google Scholar 

  • Geloen A, Collet AJ, Guay G and Bukowiecki LJ (1989a) Insulin stimulates in vivo cell proliferation in white adipose tissue. Am J Physiol 256: C190-C196.

    CAS  Google Scholar 

  • Geloen A (1989b) Regression of white adipose tissue in diabetic rats. Am J Physiol 257: E547-E553.

    CAS  Google Scholar 

  • Gospodarowicz D, Ferarra N, Schweigerer N, and Neufeld G (1987) Structural characterization and biological functions of fibroblast growth factor. Endocrine Rev 8: 95–114.

    Article  CAS  Google Scholar 

  • Graves RA, Tontonoz P and Spiegelman BM (1992) Analysis of a Tissue-Specific enhancer: ARF6 regulates adipogenic gene expression. Mol Cell Biol 12: 1202–1208.

    CAS  Google Scholar 

  • Hauner H, Entenmann G, Wabitsch M, Gaillard D and Ailhaud G (1989) Promoting effect of glucocorticoids on the differentiation of human adipocyte precursor cells cultured in a chemically defined medium. J Clin Invest 84: 1663–1670.

    Article  CAS  Google Scholar 

  • Johnson BM and Grenwood CA (1988) In Cell and Tissue Biology: A Textbook of Histology In: Weiss L (ed) pp. 189–209. Baltimore: Urban and Schwartzenberg.

    Google Scholar 

  • Kim JB, Spotts GD, Halvorsen Y, Shih H, Ellenberger T, Towle HC and Spiegelman BM (1995) Dual DNA binding specificity of ADD1/SREBP1 controlled by a single amino acid in the basic helix-loop-helix domain. Mol Cell Biol 15: 2582–2588.

    CAS  Google Scholar 

  • Kim JB and Spiegelman BM (1996) ADD1/SREBP1 promotes adipocyte differnetiation and gene expression linked to fatty acid metabolism. Genes Dev 10: 1096–1107.

    CAS  Google Scholar 

  • Kliewer, Lenhars, Willson TM, Patel I, Morris DC and Lehmann JM (1995) A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor γ and promotes adipocyte differentiation. Cell 83: 813–819

    Article  CAS  Google Scholar 

  • Kuri-Harcush W, Arguello C and Marsch-Moreno M (1984) Extracellular matrix production by mouse 3T3-F442A cells during adipose differentiation in culture. Differentiation 28: 173–178.

    Article  Google Scholar 

  • Lin FT and Lane MD (1992) Antisense CCAAT/enhancer-binding protein RNA suppresses coordinate gene expression and trigly-deride accumulation during differentiation of 3T3-L1 preadipocytes. Genes Dev 6: 533–544.

    CAS  Google Scholar 

  • Lin FT and Lane MD (1994) CCAAT/enhancer binding protein α is sufficient to initiate the 3T3-L1 adipocyte differnetiation program. Proc Natl Acad Sci USA 91: 8757–8761.

    Article  CAS  Google Scholar 

  • Miller WH Jr, Faust IM, Goldberger AC and Hirsch J (1983) Effects of severe long-term food deprivation and refeeding on adipose tissue cells in the rat. Am J Physiol 245: E74-E80.

    Google Scholar 

  • Napolitano L (1963) The differentiation of white adipose cells. J Cell Biol 18: 663–679.

    Article  CAS  Google Scholar 

  • Niimi T, Kumagai C, Okano M and Kitagawa Y (1997) Differentiation-dependent expression of laminin-8 (α 4 β1 γ 1) mRNAs in mouse 3T3-L1 adipocytes. Matrix Biol 16: 223–230.

    Article  CAS  Google Scholar 

  • Ochi M, Yoshioka H, Sawada T, Kusunoki T and Hattori T (1991) New adipocyte formation in mice during refeeding after long-term deprivation. Am J Physiol 260: R468-R474.

    CAS  Google Scholar 

  • Ono M, Aratani Y, Kitagawa I and Kitagawa Y (1990) Ascorbic acid phosphate stimulates type IV collagen synthesis and accelerates adipose conversion of 3T3-L1 cells. Exp Cell Res 187: 309–314.

    Article  CAS  Google Scholar 

  • Passaniti A, Taylor RM, Pili R, Guo Y, Long PV, Haney JA, Pauly RR, Grant DS and Martin GR (1992) A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Invest 67: 519–528.

    CAS  Google Scholar 

  • Ron D and Habener JF (1992) CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors as a dominant-negative inhibitor of gene transcription. Genes Dev 6: 439–453.

    CAS  Google Scholar 

  • Smas CM and Sul HS (1993) Pref-1, a protein containing EGF-like repeats, inhibits adpocyte differentiation. Cell 73: 725–734.

    Article  CAS  Google Scholar 

  • Teimourian B, Chajchir A, Gotkin R, and Reisin JH (1989) Semiliquid autologous fat transplantation. Adv Plast Reconst Surg 5: 57–68.

    Google Scholar 

  • Tokida Y, Aratani Y, Morita A and Kitagawa Y (1990) Production of two variant laminin forms by endothelial cells and shift of their relative levels by angiostatic steroids. J Biol Chem 265: 18123–18129.

    CAS  Google Scholar 

  • Tontonoz P, Kim JB, Graves RA and Spiegelman BM (1993) ADD1: a novel helix-loop-helix transcription factor associated with adipocyte determination and differentiation. Mol Cell Biol 13: 4753–4759.

    CAS  Google Scholar 

  • Tontonoz P, Hu E and Spiegelman BM (1994a) Stimulation of adipogenesis in fibroblasts by PPAR γ2, a lipid-activated transcription factor. Cell 79: 1147–1156.

    Article  CAS  Google Scholar 

  • Tontonoz P, Hu E, Graves RA, Budavari AI and Spiegelman BM (1994b) mPPAR γ2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 8: 1224–1234.

    CAS  Google Scholar 

  • Wilkison WO, Choy L and Spiegelman BM (1991) Biosynthetic regulation of monobutyrin, an adipocyte-secreted lipid with angiogenic activity. J Biol Chem 266: 16886–16891.

    CAS  Google Scholar 

  • Wu Z, Xie Y, Bucher NL and Former SR (1995) Conditional ectopic expression of C/EBPβ in NIH-3T3 cells induces PPARγ and stimulates adipogenesis. Genes Dev 9: 2350–2363.

    CAS  Google Scholar 

  • Wu Z, Bucher NL and Former SR (1996) Induction of peroxisome proliferator-activated receptor γ during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBP β, C/EBPδ, and glucocorticoids. Mol Cell Biol 16: 4128–4136.

    CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitagawa, Y., Kawaguchi, N. De novo adipogenesis for reconstructive surgery. Cytotechnology 31, 29–35 (1999). https://doi.org/10.1023/A:1008055702129

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008055702129

Navigation