Skip to main content
Log in

Dielectrophoretic forces can be safely used to retain viable cells in perfusion cultures of animal cells

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Dielectrophoresis is a well established and effective means for the manipulation of viable cells. However, its effectiveness greatly depends upon the utilization of very low electrical conductivity media. High conductivity media, as in the case of cell culture media, result only in the induction of weaker repulsive forces (negative dielectrophoresis) and excessive medium heating. A dielectrophoresis-based cell separation device (DEP-filter) has been recently developed for perfusion cultures that successfully overcomes these obstacles and provides a very high degree of viable cell separation while most of the nonviable cells are removed from the bioreactor by the effluent stream. The latter results in high viabilities throughout the culture period and minimization of lysed cell proteases in the bioreactor. However, an important question that remains to be answered is whether we have any adverse effects by exposing the cultured cells to high frequency electric fields for extended periods of time. A special chamber was constructed to quantitate the effect under several operational conditions. Cell growth, glucose uptake, lactate and monoclonal antibody production data suggest that there is no appreciable effect and hence, operation over long periods of time of the DEP-filter should not have any adverse effect on the cultured cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abidor IG and Sowers AE (1992) Kinetics and mechanism of cell membrane electrofusion. J Biophys 61: 1557-1569.

    CAS  Google Scholar 

  • Archer GP, Render MC, Betts WB and Sancho M (1993) Dielectrophoretic concentration of micro-organisms using grid electrodes. Microbios 76: 237-244.

    Google Scholar 

  • Avgerinos GC, Drapeau D, Socolow J, Mao JI, Hsiao K and Broeze RJ (1990) Spin filter perfusion system for high density cell culture: production of recombinant urinary type plasminogen activator in CHO cells. Bio/Technol 8: 54-58.

    Article  CAS  Google Scholar 

  • Berthold W and Kempken R (1994) Interactions of cell culture with downstream purification: a case study. Cytotechnol 15: 229-242.

    Article  CAS  Google Scholar 

  • Cantoni O, Sestili P, Fiorani M and Dachà M (1995) The effect of 50 Hz sinusoidal electric and/or magnetic fields on the rate of repair of DNA single/double strand breaks in oxidatively injured cells. Biochem Molec Biol Int 37: 681-689.

    PubMed  CAS  Google Scholar 

  • Cantoni O, Sestili P, Fiorani M and Dachà M (1996) Effect of 50 Hz sinusoidal electric and/or magnetic fields on the rate of repair of DNA single/double strand breaks in cultured mammalian cells exposed to three different carcinogens: methylmethane, sulphonate, chromate and 254 nm UV. Biochem Molec Biol Int 38: 527-538.

    PubMed  CAS  Google Scholar 

  • Caron AW, Tom RL, Kamen AA and Massie B (1994) Baculovirus expression system scaleup by perfusion of high-density Sf-9 cell cultures. Biotechnol Bioeng 43: 881-891.

    Article  CAS  PubMed  Google Scholar 

  • Cotter TG and Al-Rubeai M (1995) Cell death (apoptosis) in culture systems. Tibtech 13: 150-155.

    CAS  Google Scholar 

  • Deo YM, Mahadevan MD and Fuchs R (1996) Practical considerations in operation and scale-up of spin filter based bioreactors for monoclonal antibody production. Biotechnol Prog 12: 57-64.

    Article  PubMed  CAS  Google Scholar 

  • Doblhoff-Dier O, Gaida T, Katinger H, Burger W, Gröschl M and Benes E (1994) A novel ultrasonic resonance field device for the retention of animal cells. Biotechnol Prog 10: 428-432.

    Article  PubMed  CAS  Google Scholar 

  • Docoslis A, Kalogerakis N, Behie LA and Kaler KVIS (1997) A novel dielectrophoresis-based device for the selective retention of viable cells in cell culture media. Biotechnol Bioeng 54: 239-250.

    Article  PubMed  CAS  Google Scholar 

  • Esclade LRJ, Carrel S and Péringer P (1991) Influence of the screen material on the fouling of spin filters. Biotechnol Bioeng 38: 159-168.

    Article  CAS  PubMed  Google Scholar 

  • Forestell SP (1992) Optimization of microcarrier cultures used in human vaccine production, Ph.D. thesis, University of Calgary, Calgary, Alberta, Canada.

    Google Scholar 

  • Fuhr G, Glasser H, Müller T and Schnelle T (1994) Cell manipulation and cultivation under AC electric field influence in highly conductive media. Biochim Biophys Acta 1201: 353-360.

    PubMed  CAS  Google Scholar 

  • Gaida Th, Doblhoff-Dier O, Strutzenberger K, Katinger H, Burger W, Gröschl M, Handl B and Benes E (1996) Selective retention of viable cells in ultrasonic resonance field devices. Biotechnol Prog 12: 73-76.

    Article  PubMed  CAS  Google Scholar 

  • Gascoyne PRC, Becker FF and Wang X-B (1995) Membrane changes accompanying the induced differentiation of Friend murine erythroleukemia cells studied by dielectrophoresis. Bioelectrochem Bioenerget 36: 115-125.

    Article  CAS  Google Scholar 

  • Gimsa J, Marszalek P, Loewe U and Tsong TY (1991) Dielectrophoresis and electrorotation of neurospora slime and murine myeloma cells. Biophys J 60: 749-760.

    PubMed  CAS  Google Scholar 

  • Grosse C and Schwan HP (1992) Cellular membrane potentials induced by alternating fields. Biophysical J 63: 1632-1642.

    CAS  Google Scholar 

  • Hansen HA, Damgaard B and Emborg C (1993) Enhanced antibody production associated with altered amino acid metabolism in a hybridoma high-density perfusion culture established by gravity separation. Cytotechnol 11: 155-166.

    Article  CAS  Google Scholar 

  • Hawrylik SJ, Wasiko DJ, Pillar JS, Cheng JB and Lee ES (1994) Vortex flow filtration of mammalian and insect cells. Cytotechnol 15: 253-258.

    Article  CAS  Google Scholar 

  • Holian O, Astumian RD, Lee RC, Reyes HM, Attar BM and Walter RJ (1996) Protein kinase C activity is altered in HL60 cells exposed to 60 Hz AC electric fields. Bioelectromagnetics 17: 504-509.

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Wang X-B, Tame JA and Pethig R (1993) Electrokinetic behavior of colloidal particles in traveling electric fields: studies using yeast cells. J Phys D Appl Phys 26: 1528-1535.

    Article  CAS  Google Scholar 

  • Hülscher M, Scheibler U and Onken U (1991) Selective recycle of viable animal cells by coupling of airlift reactor and cell settler. Biotechnol Bioeng 39: 442-446.

    Article  Google Scholar 

  • Kaler KVIS and Jones TB (1990) Dielectrophoretic spectra of single cells determined by feedback-controlled levitation. Biophys J 57: 173-182.

    Article  PubMed  CAS  Google Scholar 

  • Kaler KVIS, Xie JP, Jones TB and Paul R (1992) Dual-frequency dielectrophoretic levitation of Canola protoplasts. Biophys J 63: 58-69.

    PubMed  Google Scholar 

  • Knedlitschek G, Noszvai-Nagy M, Meyer-Waarden H, Schinnelpfeng J, Weibezahn KF and Dertinger H (1994) Cyclic AMP response in cells exposed to electric fields of different frequencies and intensities. Radiat Environ Biophys 33: 141-147.

    Article  PubMed  CAS  Google Scholar 

  • Krishna GG, Anwar AKW, Mohan DR and Ahmad A (1989) Dielectrophoretic study of human erythrocytes. J Biomed Eng 11: 375-380.

    Google Scholar 

  • Lee SM (1989) The primary stages of protein recovery. J Biotechnol 11: 103-118.

    Article  CAS  Google Scholar 

  • Loscher W and Mevissen M (1994) Animal studies on the role of 50/60 Hz magnetic fields in carcinogenesis. Life Science 54: 1531-1543.

    Article  CAS  Google Scholar 

  • Mahar JT (1993) Scale-up and validation of sedimentation centrifuges. Part I: Scale-up. Biopharm (September), 42-51.

  • Markx GH, Talary MS and Pethig, R (1994) Separation of viable and non-viable yeast using dielectrophoresis. J Biotechnol 32: 29-37.

    Article  PubMed  CAS  Google Scholar 

  • Neil GA and Zimmermann U (1993) Electroinjection. Methods Enzymol 221: 339-361.

    Article  PubMed  CAS  Google Scholar 

  • Neumann E, Sowers AE and Jordan CA (1989) Electroporation and Electrofusion in Cell Biology. Plenum Press, New York-London.

    Google Scholar 

  • Oh DJ, Choi SK and Chang HN (1994) High-density continuous cultures of hybridoma cells in a depth filter perfusion system. Biotechnol Bioeng 44: 895-901.

    Article  CAS  PubMed  Google Scholar 

  • Pohl HA (1977) In: Catsimpoolas N (ed) Methods of Cell Separation. Vol. 1 (pp. 67-169) Plenum Press, New York.

    Google Scholar 

  • Sagan LA (1992) Epidemiological and laboratory studies of power frequency electric and magnetic fields. JAMA 268: 625-629.

    Article  PubMed  CAS  Google Scholar 

  • Schwan HP (1983) Biophysics of the interaction of electromagnetic energy with cells and membranes. In: Grandolfo M, Michaelson SM and Rindi A (eds) Biological Effects and Dosimetry of Nonionizing Radiation. (pp. 213-231) Plenum Press, New York.

    Google Scholar 

  • Searles JA, Todd P and Kompala DS (1994) Viable cell recycle with an inclined settler in the perfusion culture of suspended recombinant Chinese hamster ovary cells. Biotechnol Prog 10: 198-206.

    Article  PubMed  CAS  Google Scholar 

  • Sukhorukov VL, Arnold WM and Zimmermann U (1993) Hypotonically induced changes in the plasma membrane of cultured mammalian cells. J Membrane Biol 132: 27-40.

    Article  CAS  Google Scholar 

  • Trampler F, Sonderhoff SA, Pui PWS, Kilburn DG and Piret JM (1994) Acoustic cell filter for high density perfusion culture of hybridoma cells. Bio/Technol 12: 281-284.

    Article  CAS  Google Scholar 

  • Trombi L, Petrini M, Manara G, Mese ED and Revoltella RP (1993) Effects of repeated exposure to high-voltage electric discharges and low-frequency electromagnetic fields on cultured mouse P3x63Ag8 plasmocytoma cells. Electro-and Magnetobiology 12: 125-134.

    Article  Google Scholar 

  • Whitson GL, Carrier WL, Francis AA, Shih CC, Georghiou S and Regan JD (1986) Effects of extremely low frequency electric fields on cell growth and DNA repair in human skin fibroblasts. Cell Tissue Kinetics 19: 39-47.

    CAS  Google Scholar 

  • Zimmermann U (1986) Electrical breakdown, electropermeabilization and electrofusion. Rev Physiol Biochem Pharmacol 105: 176-256.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Docoslis, A., Kalogerakis, N. & Behie, L.A. Dielectrophoretic forces can be safely used to retain viable cells in perfusion cultures of animal cells. Cytotechnology 30, 133–142 (1999). https://doi.org/10.1023/A:1008050809217

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008050809217

Navigation