Skip to main content
Log in

Strategies for recombinant Furin employment in a biotechnological process: complete target protein precursor cleavage

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Coagulation factors, amongst many other proteins, often require posttranslational endoproteolytic processing for maturation. Upon high yield expression of recombinant forms of these proteins, processing frequently becomes severely limiting, resulting in a hampered function of the protein. In this report, the human endoprotease Furin was used to achieve complete propeptide removal from recombinant von Willebrand Factor (rvWF) precursors in CHO cells. At expression beyond 200 ng rvWF/106 cells × day, processing became insufficient. Stable co- and overexpression of full length Furin resulted in complete precursor cleavage in cell clones expressing 2 μg rvWF/106 cells × day. Rather than occuring intracellularly, processing was found to be mediated by a naturally secreted form of rFurin, present in 100 fold higher concentrations than endogenous Furin and accumulating in the cell culture supernatant. Attempts to increase rFurin yield by amplification, in order to ensure complete rvWF precursor processing at expression rates beyond 2 μg rvWF/106 cells × day, failed. Truncation of the trans-membrane domain resulted in immediate secretion of rFurin and approximately 10 fold higher concentrations in the conditioned medium. In cases where these high rFurin concentrations are not sufficient to ensure complete processing, an in vitro downstream processing procedure has to be established. Secreted affinity epitope-tagged rFurin derivatives were constructed, the fate of which, at expression, was dependent on the size of the C-terminal truncation and the type of the heterologous epitope added. A suitable candidate was purified by a one step affinity procedure, and successfully used for in vitro processing. This allows complete proteolytic processing of large amounts of precursor molecules by comparably small quantities of rFurin. Complete precursor cleavage of a target protein at expression rates of up to approximately 200 ng, 2 μg, and 20 μg, as well as beyond 20 μg/106 cells × day can thus be anticipated to be accomplished by endogenous Furin, additional expression of full length rFurin, co-expression of truncated and hence secreted rFurin, and a protein-chemical in vitro procedure, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashman CR and Davidson RL (1985) High spontaneous-mutation frequency of BPV shuttle vector. Somat. Cell Mol. Genet. 11: 499-504.

    Article  PubMed  CAS  Google Scholar 

  • Calos MP, Lebkowski JS and Botchan MR (1983) High mutation frequency in DNA transfected into mammalian cells. Proc. Natl. Acad. Sci. USA 80: 3015-3019.

    Article  PubMed  CAS  Google Scholar 

  • Chapman RE and Munro S (1994) Retrieval of TGN proteins from the cell surface requires endosomal acidification. EMBO J. 13: 2305-2312.

    PubMed  CAS  Google Scholar 

  • Creemers JWM (1994) Structural and functional characterization of the mammalian proprotein processing enzyme Furin. Ph.D. Thesis at the University of Leuven, Belgium.

  • Creemers JWM, Siezen RJ, Roebroek AJM, Ayoubi TAY, Huylebroeck D and van de Ven WJM (1993) Modulation of Furinmediated proprotein processing activity by site-directed mutagenesis. J. Biol. Chem. 268: 21826-21834.

    PubMed  CAS  Google Scholar 

  • Crowe J, Dobeli H, Gentz R, Hochuli E, Stüber D and Henco K (1994) 6xHis-Ni-NTA chromatography as a superior technique in recombinant protein expression/purification. Methods Mol. Biol. 31: 371-387.

    PubMed  CAS  Google Scholar 

  • Denault J-B and Leduc R (1996) Furin/PACE/SPC 1: a convertase involved in exocytic and endocytic processing of precursor proteins. FEBS Lett. 379: 113-116.

    Article  PubMed  CAS  Google Scholar 

  • Fischer B, Mitterer A, Schlokat U, DenBouwmeester R and Dorner F (1994) Structural analysis of recombinant von Willebrand factor: identification of hetero-and homomultimers. FEBS Lett. 351: 345-348.

    Article  PubMed  CAS  Google Scholar 

  • Fischer BE, Schlokat U, Mitterer A, Reiter M, Mundt W, Turecek PL, Schwarz HP and Dorner F (1995) Structural analysis of recombinant von Willebrand factor produced at industrial scale fermentation of transformed CHO cells co-expressing recombinant Furin. FEBS Lett. 375: 259-262.

    Article  PubMed  CAS  Google Scholar 

  • Fischer BE, Schlokat U, Reiter M, Mundt W and Dorner F (1997) Biochemical and functional characterization of recombinant von Willebrand Factor produced at large scale. Cell. Mol. Life Sci. 53: 943-950.

    Article  PubMed  CAS  Google Scholar 

  • Fischer BE, Thomas KB, Schlokat U and Dorner F (1998) Multimer structure of human von Willebrand factor. Biochem. J. 331: 483-488.

    PubMed  CAS  Google Scholar 

  • Furlan M (1996) Von Willebrand factor: molecular size and functional activity. Ann. Hematol. 72: 341-348.

    Article  PubMed  CAS  Google Scholar 

  • Hatsuzawa K, Nagahama M, Takahashi S, Takada K, Murakami K and Nakayama K (1992) Purification and characterization of Furin, a kex2-like processing endoprotease, produced in chinese hamster ovary cells. J. Biol. Chem. 267: 16094-16099.

    PubMed  CAS  Google Scholar 

  • Himmelspach M, Schlokat U, Pfleiderer M, Fischer B, Antoine G, Falkner FG and Dorner F. Recombinant human factor X: high yield expression and maturation by Furin mediated in vitro processing. Submitted.

  • Jones BG, Thomas L, Molloy SS, Thulin CD, Fry MD, Walsh KA and Thomas G (1995) Intracellular trafficking of Furin is modulated by the phosphorylation state of a casein II site in its cytoplasmic tail. EMBO J. 14: 5869-5883.

    PubMed  CAS  Google Scholar 

  • Kaufman RJ, Wasley LC, Furie BC, Furie B and Shoemaker CB (1986) Expression, purification, and characterization of recombinant γ-carboxylated factor IX synthesized in chinese hamster ovary cells. J. Biol. Chem. 261: 9622-9628.

    PubMed  CAS  Google Scholar 

  • Lethagen SR (1995) Pathogenesis, clinical picture and treatment of von Willebrand's disease. Annals of Medicine 27: 641-651.

    PubMed  CAS  Google Scholar 

  • Leyte A, Voorberg J, Van Schijndel HB, Duim B, Pannekoek H and Van Mourik JA (1991) The pro-polypeptide of von Willebrand factor is required for the formation of a functional factor VIII-binding site on mature von Willebrand factor. Biochem. J. 274: 257-261.

    PubMed  CAS  Google Scholar 

  • MacGregor GR and Caskey CT (1989) Construction of plasmids that express E. coli β-galactosidase in mammalian cells. Nucl. Acids Res. 17: 2365.

    PubMed  CAS  Google Scholar 

  • Meulien P, Balland A, Lepage P, Mischler F, Dott K, Hauss C, Grandgeorge M and Lecocq JP (1990) Increased biological activity of a recombinant factor IX variant carrying alanine at position +1. Prot. Engineering 3: 629-633.

    CAS  Google Scholar 

  • Molloy SS, Thomas L, VanSlyke JK, Stenberg PE and Thomas G (1994) Intracellular trafficking and activation of the Furin proprotein convertase: localization to the TGN and recycling from the cell surface. EMBO J. 13: 18-33.

    PubMed  CAS  Google Scholar 

  • Paleyanda R, Drews R, Lee TK and Lubon H (1997) Secretion of human Furin into mouse milk. J. Biol. Chem. 272: 15270-15274.

    Article  PubMed  CAS  Google Scholar 

  • Razzaque A, Mizusawa H and Seidman MM (1982) Rearrangement and mutagenesis of a shuttle-vector plasmid after passage in mammalian cells. Proc. Natl. Acad. Sci. USA 80: 3010-3014.

    Article  Google Scholar 

  • Rehemtulla A and Kaufman RJ (1992) Preferred sequence requirements for cleavage of pro-von Willebrand factor by propeptide-processing enzymes. Blood 79: 2349-2355.

    PubMed  CAS  Google Scholar 

  • Rehemtulla A, Dorner AJ and Kaufman RJ (1992) Regulation of PACE propeptide-processing activity: requirement for a post-endoplasmic reticulum compartment and autoproteolytic activation. Proc. Natl. Acad. Sci. USA 89: 8235-8239.

    Article  PubMed  CAS  Google Scholar 

  • Roussi J, Turecek PL, Andre P, Bonneau M, Pignaud G, Bal dit Sollier C, Schlokat U, Dorner F, Schwarz HP and Drouet L (1998) Effects of human recombinant, plasma-derived, and porcine von Willebrand factor in pigs with severe von Willebrand disease. Blood Coagul. Fibrinol. 9: 361-372.

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF and Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edition). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, U.S.A.

    Google Scholar 

  • Schäfer W, Stroh A, Berghofer S, Seiler J, Vey M, Kruse ML, Kern HF, Klenk HD and Garten W (1995) Two independent targeting signals in the cytoplasmic domain determine trans-Golgi network localization and endosomal trafficking of the proprotein convertase Furin. EMBO J. 14: 2424-2435.

    PubMed  Google Scholar 

  • Schlokat U, Fischer BE, Herlitschka S, Antoine G, Preininger A, Mohr G, Himmelspach M, Kistner O, Falkner FG and Dorner F (1996) Production of highly homogeneous and structurally intact recombinant von Willebrand Factor multimers by Furin-mediated propeptide removal in vitro. Biotechnol. Appl. Biochem. 24: 257-267.

    PubMed  CAS  Google Scholar 

  • Seidah NG, Chretien M and Day R (1994) The family of subtilisin/kexin like pro-protein and pro-hormone convertases: divergent or shared functions. Biochimie 76: 197-209.

    Article  PubMed  CAS  Google Scholar 

  • Spence MJ, Sucic JF, Foley BT and Moehring TJ (1995) Analysis of mutations in alleles of the fur gene from an endoprotease-deficient chinese hamster ovary cell strain. Somat. Cell Mol. Gen. 21: 1-18.

    Article  CAS  Google Scholar 

  • Stieneke-Gröber A, Vey M, Angliker H, Shaw E, Thomas G, Roberts C, Klenk HD and Garten W (1992) Influenza virus hemagglutinin with multibasic cleavage site is activated by Furin, a subtilisin-like endoprotease. EMBO J. 11: 2407-2414.

    PubMed  Google Scholar 

  • Takahashi S, Hatsuzawa T, Watanabe T, Murakami K and Nakayama K (1994) Sequence requirements for endoproteolytic processing of precursor proteins by Furin: transfection and in vitro experiments. J. Biochem. 116: 47-52.

    PubMed  CAS  Google Scholar 

  • Takahashi S, Nakagawa T, Banno T, Watanabe T, Murakami K and Nakayama K (1995) Localization of Furin to the trans-Golgi network and recycling from the cell surface involves ser and tyr residues within the cytoplasmic tail. J. Biol. Chem 270: 28397-28401.

    Article  PubMed  CAS  Google Scholar 

  • Turecek PL, Gritsch H, Pichler L, Auer W, Fischer B, Mitterer A, Mundt W, Schlokat U, Dorner F, Brinkman HJM, van Mourik JA and Schwarz HP (1997) In vivo characterization of recombinant von Willebrand factor in dogs with von Willebrand disease. Blood 90: 3555-3567.

    PubMed  CAS  Google Scholar 

  • Urlaub G and Chasin LA (1980) Isolation of chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proc. Natl. Acad. Sci. USA 77: 4216-4220.

    Article  PubMed  CAS  Google Scholar 

  • Van der Eb AJ and Graham FL (1980) Assay of transforming activity of tumor virus DNA. Methods Enzymol. 65: 826-839.

    Article  PubMed  CAS  Google Scholar 

  • Van de Ven WJM, Voorberg J, Fontijn R, Pannekoek H, van den Ouweland AMW, van Duijnhoven HLP, Roebroek AJM and Siezen RJ (1990) Furin is a subtilisin-like pro-protein processing enzyme in higher eucaryotes. Mol. Biol. Rep. 14: 265-275.

    Article  PubMed  CAS  Google Scholar 

  • Van Duijnhoven HLP, Creemers JWM, Kranenborg MGC, Timmler EDJ, Groeneveld A, van den Ouweland AMW, Roebroek AJM and van de Ven WJM (1992) Development and characterization of a panel of monoclonal antibodies against the novel subtilisin-like proprotein processing enzyme Furin. Hybridoma 11: 71-86.

    Article  PubMed  CAS  Google Scholar 

  • Vey M, Schäfer W, Berghöfer S, Klenk HD and Garten W (1994) Maturation of the trans-Golgi network protease Furin: compartmentalization of propeptide removal, substrate cleavage, and COOH-terminal truncation. J. Cell Biol. 127: 1829-1842.

    Article  PubMed  CAS  Google Scholar 

  • Vidricaire G, Denault JB and Leduc R (1993) Characterization of a secreted form of human Furin endoprotease. Biochem Biophys. Res. Comm. 195: 1011-1018.

    Article  PubMed  CAS  Google Scholar 

  • Wasley LC, Rehemtulla A, Bristol JA and Kaufman RJ (1993) PACE/Furin can process the vitamin K-dependent pro-factor IX precursor within the secretory pathway. J. Biol. Chem. 268: 8458-8465.

    PubMed  CAS  Google Scholar 

  • Wise RJ, Barr PJ, Wong PA, Kiefer MC, Brake AJ and Kaufman RJ (1990) Expression of a human proprotein processing enzyme: correct cleavage of the von Willebrand factor precursor at a paired basic amino acid. Proc. Natl. Acad. Sci. USA 87: 9378-9382.

    Article  PubMed  CAS  Google Scholar 

  • Wise RJ, Dorner AJ, Krane M, Pittman DD and Kaufman RJ (1991) The role of von Willebrand factor multimers and propeptide cleavage in binding and stabilization of factor VIII. J. Biol. Chem. 266: 21948-21955.

    PubMed  CAS  Google Scholar 

  • Wolins N, Bosshart H, Kuster H and Bonifacio JS (1997) Aggregation as a determinant of protein fate in post-Golgi compartments: role of the luminal domain of Furin in lysosomal targeting. J. Cell Biol. 139: 1735-1745.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preininger, A., Schlokat, U., Mohr, G. et al. Strategies for recombinant Furin employment in a biotechnological process: complete target protein precursor cleavage. Cytotechnology 30, 1–16 (1999). https://doi.org/10.1023/A:1008030407679

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008030407679

Navigation