Skip to main content
Log in

Nucleotide excision repair and anti-cancer chemotherapy

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

DNA repair is an important effector of anti-cancer drug resistance. In recent years, it has become apparent that DNA repair is an extremely complex process. Processes within DNA repair that may contribute to one or more drug resistance phenotypes include; O-6-alkyltransferase activity, base excision repair, mismatch repair, nucleotide excision repair, and gene specific repair. Clearly, several of these processes may show increased activity within any single cell, or tumor, at any one time. This review attempts to touch briefly upon the question of the distinctions between each of these specific pathways; and then seeks to expand on nucleotide excision repair as a possible effector of cellular and clinical resistance to platinum-based anticancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zwelling LA, Anderson T and Kohn KW (1979) DNA-protein and DNA interstrand cross-linking by cis-and transplatinum(II)diamminedichloride in L1210 mouse leukemia cells and its relation to cytotoxicity. Cancer Res 39: 365-369.

    CAS  Google Scholar 

  2. Plooy ACM, van Diik M and Lohman PHM (1984) Induction and repair of DNA cross-links in Chinese hamster ovary cells treated with various platinum coordination compounds in relation to platinum binding to DNA, cytotoxicity, mutagenicity, and antitumor activity. Cancer Res 44: 2043-2051.

    CAS  Google Scholar 

  3. Reed E (1990) Cisplatin, In Pinedo HM, Chabner BA and Longo DL (eds) Cancer Chemotherapy and Biological Response Modifiers Annual - Volume 11. Elsevier Science Publishers B.V., Amsterdam, pp. 90-96.

    Google Scholar 

  4. Friedberg EC, Walker GC and Siede W (1995) DNA Repair and Mutagenesis, ASM Press, Washington, D.C.

    Google Scholar 

  5. Pegg AE (1990) Mammalian O6alkylguanine-DNA alkyltransferase: regulation and importance of response to alkylating carcinogenesis and therapeutic agents. Cancer Res 50: 6119-6129.

    CAS  Google Scholar 

  6. Brent TP and Remack JS (1988) Formation of covalent complexes between human O6alkylguanine-DNA alkyltransferase and BCNU-treated defined length synthetic oligodeoxynucleotides. Nucleic Acids Res 16: 6779-6788.

    CAS  Google Scholar 

  7. Seeberg E, Eide L and Bjoras M (1995) The base excision repair pathway. Trends Biochem Sci 20: 391-397.

    Article  CAS  Google Scholar 

  8. Doroshow JH (1996) Anthracyclines and anthracenediones, In BA Chabner and DL Longo (eds) Cancer Chemotherapy and Biotherapy Principles and Practice, Lippincott-Raven, Philadelphia, 2nd ed, pp. 409-434.

    Google Scholar 

  9. Klungland A and Lindahl T (1997) Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO Journal 16: 3341-3348.

    Article  CAS  Google Scholar 

  10. Sancar A and Sancar GB (1988) Annu Rev Biochem 57: 29-67.

    Article  CAS  Google Scholar 

  11. Drapkin R, Sancar A and Reinberg D (1994) Where transcription meets repair. Cell 77: 9-12.

    Article  CAS  Google Scholar 

  12. Lee KB, Parker RJ and Reed E (1995) Effect of cadmium on human ovarian cancer cells with acquired cisplatin resistance. Cancer Letters 88: 57-66.

    Article  CAS  Google Scholar 

  13. Mu D, Park C-H, Matsunaga T, Hsu D S, Reardon J T and Sancar A (1995) Reconstitution of human DNA Repair excision nuclease in a highly defined system. J Biol Chem 270: 2415-2418.

    Article  CAS  Google Scholar 

  14. Mu D, Hsu DS and Sancar A (1996) Reaction mechanism of human DNArepair excision nuclease. J Biol Chem 271: 8285-8294.

    Article  CAS  Google Scholar 

  15. Shivji MKK, Kenny MK and Wood RD (1992) Proliferating cell nuclear antigen is required for DNA excision repair. Cell 69: 367-374.

    Article  CAS  Google Scholar 

  16. Sancar A (1994) Mechanisms of DNA excision repair. Science 266: 1954-1956.

    CAS  Google Scholar 

  17. Van Vuuren AJ, Appeldoorn E, Odijk H, Humbert S, Moncollin V, Eker AP, Jaspers NG, Egly JM and Hoeijmakers JH (1995) Partial characterization of the DNA repair protein complex containing the ERCC1, ERCC4, ERCC11, and XPF correcting activities. Mutation Res 337: 25-39.

    CAS  Google Scholar 

  18. Dabholkar M, Bostick-Bruton F, Weber C, Egwuagu C, Bohr VA and Reed E (1993) Expression of excision repair genes in non-malignant bone marrow from cancer patients. Mutation Res 293: 151-160.

    CAS  Google Scholar 

  19. Dabholkar MD, Berger MS, Vionnet JA, Egwuagu C, Silber JR, Yu JJ and Reed E (1995) Malignant and non-malignant brain tissues differ in their mRNA expression patterns for ERCC1 and ERCC2. Cancer Res 55: 1261-1266.

    CAS  Google Scholar 

  20. Dabholkar MD, Berger MS, Vionnet JA, Overton L, Bostick-Bruton F, Yu JJ, Silber JR and Reed E (1996) Comparative analyses of relative ERCC3 and ERCC6 mRNA levels in gliomas and adjacent non-neoplastic brain. Molecular Carcinogenesis 17: 1-7.

    Article  CAS  Google Scholar 

  21. Karran P (1995) Appropriate partners make good matches. Science 268: 1857-1858.

    CAS  Google Scholar 

  22. Modrich P (1994) Mismatch repair, genetic stability, and cancer. Science 266: 1959-1960.

    CAS  Google Scholar 

  23. Drummond JT, Li G-M, Longley MJ and Modrich P (1995) Isolation of an hMSH2-p160 heterodimer that restores DNA mismatch repair to tumor cells. Science 268: 1909-1912.

    CAS  Google Scholar 

  24. Palombo F, Gallinari P and Iaccarino I et al. (1995) GTBP, a 160-kilodalton protein essential for mismatch-binding activity in human cells. Science 268: 1912-1914.

    CAS  Google Scholar 

  25. Drummond JT, Anthoney A, Brown R and Modrich P (1996) Cisplatin and adriamycin resistance are associated with MutLalpha and mismatch repair deficiency in an ovarian tumor cell line. J Biol Chem 271: 19645-19648.

    Article  CAS  Google Scholar 

  26. Wang XW and Harris CC (1997) P53 Tumor-suppressor gene: clues to molecular carcinogenesis. J Cell Physiol 173: 247-255.

    Article  CAS  Google Scholar 

  27. Harris LC, Remack JS, Houghton PJ and Brent TP (1996) Wild-type p53 suppresses transcription of the human O6-methylguanine-DNA methyltransferase gene. Cancer Res 56: 2029-2032.

    CAS  Google Scholar 

  28. Kastan MB, Canman CE and Leonard CJ (1995) p53, Cell cycle control and apoptosis: implications for cancer. Cancer Metastasis Rev 14: 3-xx.

    Article  CAS  Google Scholar 

  29. Righetti SC, Torre GD and Pilotti S et al. (1996) A comparative study of p53 gene mutations, protein accumulation, and response to cisplatin-based chemotherapy in advanced ovarian carcinoma. Cancer Res 56: 689-693.

    CAS  Google Scholar 

  30. Wahl AF, Donaldson KL and Fairchild C et al. (1996) Loss of normal p53 function confers sensitization to taxol by increasing G2/M arrest and apoptosis. Nature Med 2: 72-79.

    Article  CAS  Google Scholar 

  31. Weeda G, van Ham RCA, Vermeulen W, Bootsma D, van der Eb AJ and Hoeijmakers JHJ (1990) A presumed DNA helicase encoded by ERCC3 is involved in the human repair disorders xeroderma pigmentosum and Cockayne's syndrome. Cell 62: 777-791.

    Article  CAS  Google Scholar 

  32. Park C-H and Sancar A (1994) Formation of a ternary complex by human XPA, ERCC1, and ERCC4 (XPF) excision repair proteins. Proc Natl Acad Sci USA 91: 5017-5021.

    Article  CAS  Google Scholar 

  33. Li L, Elledge SJ, Peterson CA, Balses ES and Legerski RJ (1994) Specific association between the human DNA repair proteins XPA and ERCC1. Proc Natl Acad Sci USA 91: 5012-5016.

    Article  CAS  Google Scholar 

  34. Troelstra C, van Gool A, de Wit J, Vermeulen W, Bootsma D and Hoeijmakers JHJ (1992) ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes. Cell 71: 939-953.

    Article  CAS  Google Scholar 

  35. Van Duin M, Koken MHM, van den Tol J, ten Dijke P, Odijk H, Westerveld A, Bootsma D and Hoeijmakers JHJ (1987) Genomic characterization of the human DNA excision repair gene ERCC-1. Nucleic Acids Res 15: 9195-9213.

    CAS  Google Scholar 

  36. Reed E (1993) ‘Platinum Analogs’; Section 7 of Chapter 18 - ‘Anticancer Drugs’, In DeVita VT, Hellman S and Rosenberg SA (eds) Cancer Principles and Practice of Oncology, Lippincott, Philadelphia, pp. 390-400.

  37. Reed E, Dabholkar M and Chabner BA (1996) Platinum Analogues, In Chabner BA and Longo DL (eds) Cancer Chemotherapy (2nd Ed), Lippincott-Raven Publishers, Philadelphia, pp. 357-378.

    Google Scholar 

  38. Eastman A, Schulte N, Sheibani N and Sorenson CM (1988) Mechanisms of resistance to platinum drugs. In Nicolini M (ed) Platinum and Other Metal Coordination Compounds in Cancer Chemotherapy. Martinus Nijhoff Publishing, Boston, pp. 178-196.

    Google Scholar 

  39. Parker RJ, Eastman A, Bostick-Bruton F and Reed E (1991) Acquired cisplatin resistance in human ovarian cancer cells is associated with enhanced repair of cisplatin-DNA lesions and reduced drug accumulation. J Clin Invest 87: 772-777.

    CAS  Google Scholar 

  40. Dabholkar M, Parker R and Reed E (1992) Determinants of cisplatin sensitivity in non-malignant, non-drug-selected human T cell lines. Mutation Res, 274(1): 45-56.

    CAS  Google Scholar 

  41. Dabholkar M, Bradshaw L, Parker RJ, Gill I, Bostick-Bruto F, Muggia FM and Reed E (1992) Cisplatin-DNA adduct damage and repair in peripheral blood leukocytes: in vivoand in vitro. Environmental Health Perspectives 93: 53-59.

    Google Scholar 

  42. Godwin AK, Meister A and O'Dwyer PJ et al. (1992) High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc Natl Acad Sci USA 89: 3070-3074.

    Article  CAS  Google Scholar 

  43. Schroder CP, Godwin AK, O'Dwyer PJ, Tew KD, Hamilton TC and Ozols RF (1996) Glutathione and drug resistance. Cancer Invest 14: 158-168.

    CAS  Google Scholar 

  44. Jones JC, Zhen W, Reed E, Parker RJ, Sancar A and Bohr VA (1991) Preferential DNA repair of cisplatinum lesions in active genes in CHO cells. J Biol Chem, 266: 7101-7107.

    CAS  Google Scholar 

  45. Zhen W, Link Jr CJ, O'Connor PM, Reed E, Parker RJ, Howell SB and Bohr VA (1992) Increased gene-specific repair of cisplatin interstrand crosslinks in cisplatin resistant human ovarian cancer cells. Mol and Cell Biol 12: 3689-3698.

    CAS  Google Scholar 

  46. Lee KB, Parker RJ, Bohr VA, Cornelison TC and Reed E (1993) Cisplatin sensitivity/resistance in UV-repair deficient Chinese hamster ovary cells of complementation groups 1 and 3. Carcinogenesis 14: 2177-2180.

    CAS  Google Scholar 

  47. Aebi S, Kurdi-Haidar B, Gordon R, Cenni B, Zheng H, Fink D, Christen RD, Boland CR, Koi M, Fishel R and Howell SB (1996) Loss of DNA mismatch repair in acquired resistance to cisplatin. Cancer Res 56(13): 3087-3090.

    CAS  Google Scholar 

  48. Li Q, Tsang B, Dabholkar M, Bostick-Bruton F and Reed E (1998) Cisplatin induces ERCC1 mRNA and ERCC1 protein in A2780/CP70 human ovarian cancer cells. Proc Am Assoc Cancer Res 39: 241, abst# 1649.

    Google Scholar 

  49. Dabholkar M, Vionnet J, Parker RJ, Bostick-Bruton F, Dobbins A and Reed E (1995) Expression of an alternatively spliced ERCC1 mRNA species, is related to reduced DNA repair efficiency in human T lymphocytes. Oncology Reports 2: 209-214.

    CAS  Google Scholar 

  50. Yu JJ, Reed EL, Mu C, Bostick-Bruton F and Reed E (1997) Demonstration of a polymorphism in the gene ERCC1 by two DNA sequencing methods. Oncology Reports 4: 905-907.

    CAS  Google Scholar 

  51. Yu JJ, Mu C, Lee KB, Okamoto A, Reed EL, Bostick-Bruton F, Mitchell KC and Reed E (1997) Anucleotide polymorphism in ERCC1 gene in human ovarian cancer cell lines and tumor tissues. Mutation Research Genomics 382: 13-20.

    Article  CAS  Google Scholar 

  52. Yu JJ, Mu C, Dabholkar M, Bostick-Bruton F and Reed E (1998) Alternative splicing of ERCC1 and cisplatin-DNA adduct repair in human tumor cell lines. International J Molecular Med 1: 617-620.

    CAS  Google Scholar 

  53. Dabholkar M, Vionnet JA, Bostick-Bruton F, Yu JJ and Reed E (1994) mRNA Levels of XPAC and ERCC1 in ovarian tumor tissue correlates with response to platinum containing chemotherapy. J Clin Invest 94: 703-708.

    CAS  Google Scholar 

  54. Van Duin M, de Wit J, Odijk H, Westerveld A, Yasui A, Koken HM, Hoeijmakers JH and Bootsma D (1986) Molecular characterization of the human excision repair gene ERCC-1: cDNA cloning and amino acid homology with the yeast DNA repair gene RAD10. Cell 44: 913-923.

    Article  CAS  Google Scholar 

  55. Perkins AS and Vande Woude GF (1993) Principles of molecular cell biology of cancer; oncogenes, In DeVita VT, Hellman S and Rosenberg SA (eds) Cancer Principles and Practice of Oncology, Lippincott, Philadelphia, pp. 35-59.

    Google Scholar 

  56. Poirier MC, Lippard SJ, Zwelling LA, Ushay HM, Kerrigan D, Thill CC, Santella RM, Grunberger D and Yuspa SH (1982) Antibodies elicited against cis-diamminedichloroplatinum (II)-DNA adducts formed in vivoand in vitro. Proc Natl Acad Sci USA 79: 6443-6447.

    Article  CAS  Google Scholar 

  57. Fichtinger-Schepman AMJ, Dijt FJ, De Jong WH, van Oosterom AT and Berends F (1988) in vivo cis-Diamminedichloroplatinum(II)-DNA adduct formation and removal as measured with immunochemical techniques, In Nicolini M (ed) Platinum and Other Metal Coordination Compounds in Cancer Chemotherapy. Martinus Nijhoff Publishing, Boston, pp. 32-46.

    Google Scholar 

  58. Reed E, Sauerhoff S and Poirier MC (1988) Quantitation of platinum-DNA binding in human tissues following therapeutic levels of drug exposure - A novel use of graphite furnace spectrometry. Atomic Spectroscopy 9: 93-95.

    CAS  Google Scholar 

  59. Perera FP, Tang D, Reed E, Parker RJ, Warburton D, O'Neill P, Albertini R, Bigbee W, Santella R, Tsai W-Y, Simon-Cereijido G, Randall C, Bosl G and Motzer R (1992) Multiple biologic markers in testicular cancer patients treated with platinum-based chemotherapy. Cancer Res 52: 3558-3565.

    CAS  Google Scholar 

  60. Reed E, Yuspa SH, Zwelling LA, Ozols RF and Poirier MC (1986) Quantitation of cisplatin-DNA intrastrand adducts in testicular and ovarian cancer patients receiving cisplatin chemotherapy. J Clin Invest 77: 545-550.

    Article  CAS  Google Scholar 

  61. Reed E, Ozols RF, Tarone R, Yuspa SH and Poirier MC (1987) Platinum-DNA adducts in leukocyte DNA correlate with disease response in ovarian cancer patients receiving platinum-based chemotherapy. Proc Nat'l Acad Sci USA 84: 5024-5028.

    Article  CAS  Google Scholar 

  62. Reed E, Ozols RF, Tarone R, Yuspa SH and Poirier MC (1988) The measurement of cisplatin-DNA adduct levels in testicular cancer patients. Carcinogenesis 9: 1909-1911.

    CAS  Google Scholar 

  63. Reed E, Ostchega Y, Steinberg S, Yuspa SH, Young RC, Ozols RF and Poirier MC (1990) An evaluation of platinum-DNA adduct levels relative to known prognostic variables in a cohort of ovarian cancer patients. Cancer Res 50: 2256-2260.

    CAS  Google Scholar 

  64. Gupta-Burt S, Shamkhani H, Reed E, Tarone R, Allegra CJ, Pai L and Poirier MC (1993) Correlation between patient response in ovarian, breast, and colon cancer and platinum drug-DNA adduct formation. Cancer Epidemiology, Biomarkers and Prevention 2: 229-234.

    CAS  Google Scholar 

  65. Poirier MC, Reed E, Litterst CL, Katz D and Gupta-Burt S (1992) Persistence of platinum-ammine-DNA adducts in gonads and kidneys of rats and multiple tissues from cancer patients. Cancer Res 52: 149-153.

    CAS  Google Scholar 

  66. Reed E, Gupta-Burt S, Litterst CL and Poirier MC (1990) Characterization of the DNA damage recognized by an antiserum elicited against cis-diamminedichloroplatinum (II)-modified DNA. Carcinogenesis 11: 2117-2121.

    CAS  Google Scholar 

  67. Fichtinger-Schepman AMJ, van der Velde-Bisser SD, van Kijk-Knijnenburg HCM, van Oosterom AT, Bann RA and Berends F (1990) Kinetics of the formation and removal of cisplatin-DNA adducts in blood cells and tumor tissue of cancer patients receiving chemotherapy: comparison with in vitroadduct formation. Cancer Res 50: 7887-7894.

    CAS  Google Scholar 

  68. Fichtinger-Schepman AMJ, van Oosterom AT, Lohman PHM and Berends F (1987) Cis-Diamminedichloroplatinum(II)-induced DNA adducts in peripheral leukocytes from seven cancer patients: quantitative immunochemical detection of the adduct induction and removal after a single dose of cisdiamminedichloroplatinum(II). Cancer Res 47: 3000-3004.

    CAS  Google Scholar 

  69. Fichtinger-Schepman AMJ, van Oosterom AT and Lohman PHM et al. (1987) Interindividual human variation in cisplatinum sensitivity, predictable in an in vitro assay? Mutation Res 190: 59-62.

    Article  CAS  Google Scholar 

  70. Motzer RJ, Reed E, Tang D, Shamkhani H, Poirier MC, Tsai W-Y, Parker RJ, Perera F and Bosl G (1994) Platinum-DNA adducts assayed in leukocytes of germ cell tumor patients measured by atomic absorbance spectroscopy and enzyme linked immunosorbent assay. Cancer 73: 2843-2852.

    Article  CAS  Google Scholar 

  71. Tang DL, Motzer RJ, Warburton D, O'Neill P, Albertini R, Bigbee W, Jensen RH, Bosl G and Perera FP (1992) A study of five biological markers and clinical response in 36 testicular cancer patients treated with platinum-based chemotherapy. Proc Am Assoc Cancer Res 33: 263, abst #1577.

    Google Scholar 

  72. Parker RJ, Gill I, Tarone R, Vionnet J, Grunberg S, Muggia F and Reed E (1991) Platinum-DNA damage in leukocyte DNA of patients receiving carboplatin and cisplatin chemotherapy, measured by atomic absorption spectrometry. Carcinogenesis 12: 1253-1258.

    CAS  Google Scholar 

  73. Reed E, Parker RJ, Gill I, Bicher A, Dabholkar M, Vionnet JA, Bostick-Bruton F, Tarone R and Muggia FM (1993) Platinum-DNA adduct in leukocyte DNA of a cohort of 49 patients with 24 different types of malignancy. Cancer Res 53: 3694-3699.

    CAS  Google Scholar 

  74. Schellens JH, Ma J, Planting AS, van der Burg ME, van Meerten E, de Boer-Dennert M, Schmitz PI, Stoter G and Verweij J (1996). Relationship between the exposure to cisplatin, DNA-adduct formation in leucocytes and tumor response in patients with solid tumors. Br J Cancer 73(12): 1569-1575.

    CAS  Google Scholar 

  75. Reed E and Dabholkar M (1996) Platinum-DNA adduct in vitroand in the clinic; comparisons of DNA damage levels and biologic effects. Environ Mol Mutagenesis 27(27): 56, 1996.

    Google Scholar 

  76. Reed E, Dabholkar M, Yunmbam MK and Jones L (1998) Platinum-DNA adduct in vitroand in the clinic. Proc Am Assoc Cancer Res, 39: 505, abst# 3436.

    Google Scholar 

  77. Parker RJ, Dimery IW, Dabholkar M, Vionnet J and Reed E (1993) Platinum-DNA adduct in head and neck cancer patients receiving cisplatin and carboplatin chemotherapy. Internation J Oncol 3: 331-335.

    Google Scholar 

  78. McWhir J, Selfridge J, Harrison DJ, Squires S and Melton DW (1993) Mice with DNA repair gene (ERCC-1) deficiency have elevated levels of p53, liver nuclear abnormalities and die before weaning. Nature Genetics 5: 217-224.

    Article  CAS  Google Scholar 

  79. Dabholkar M, Bostick-Bruton F, Weber C, Bohr VA, Egwuagu C and Reed E (1992) ERCC1 and ERCC2 expression inmalignant tissues from ovarian cancer patients. J Nat'l Cancer Inst 84: 1512-1517.

    CAS  Google Scholar 

  80. Yu JJ, Dabholkar M, Bennett W, Welsh JA, Mu C, Bostick-Bruton F, Vionnet JA and Reed E (1996) Platinum-sensitive and platinum-resistant ovarian cancer tissues show differences in the relationships between p53, ERCC1 and XPA. International J of Oncology 8: 313-317.

    CAS  Google Scholar 

  81. Reed E (1996) Ovarian cancer: molecular abnormalities, In Bertino JR (ed) The Encyclopedia of Cancer, Academic Press, Inc., San Diego, pp. 1192-1200.

    Google Scholar 

  82. States JC and Reed E (1996) EnhancedXPAmRNA levels in cisplatin-resistant human ovarian cancer are not associated with XPAmutations or gene amplification. Cancer Letters 108: 233-237.

    Article  CAS  Google Scholar 

  83. Metzger R, Leichman CG and Danenberg KD et al. (1998) ERCC1 mRNA levels complement thymidylate synthase mRNA levels in predicting response and survival for gastric cancer patients receiving combination cisplatin and fluorouracil chemotherapy. J Clin Oncol 16: 309-316.

    CAS  Google Scholar 

  84. Bitton RJ, Figg WD and Reed E (1995) A preliminary riskbenefit assessment of paclitaxel. Drug Safety 12: 196-208.

    CAS  Google Scholar 

  85. Parker RJ, Dabholkar M, Lee KB, Bostick-Bruton F and Reed E (1993) Taxol effect on cisplatin sensitivity and cisplatin cellular accumulation in human ovarian cancer cells. Monog Nat'l Cancer Inst 15: 83-88.

    Google Scholar 

  86. Citardi MJ, Rowinsky EK and Donehower RC (1990) Sequence-depandent cytotoxicity between cisplatin and the antimicrotubule agents taxol and vincristine. Proc Am Assoc Cancer Res 31: 410, Abst #2431.

    Google Scholar 

  87. Reed E, Kohn EC, Sarosy G, Dabholkar M, Davis P, Jacob J and Maher M (1995) Paclitaxel, cisplatin, and cyclophosphamide in human ovarian cancer: Molecular rationale and early clinical results. Seminars in Oncology 22: 90-96.

    CAS  Google Scholar 

  88. Kohn EC, Sarosy G, Davis P, Christian M, Ognibene FP, Sindelar WF, Jacob J, Steinberg SM, Premkumar A and Reed E (1996) A phase I/II study of dose-intense paclitaxel with cisplatin and cyclophosphamide as initial therapy of poorprognosis advanced-stage epithelial ovarian cancer. Gynecologic Oncol 62: 181-191.

    Article  CAS  Google Scholar 

  89. Rowinsky EK, Gilbert MR and McGuire WP et al. (1991) Sequences of taxol and cisplatin; phase I/pharmacologic study. J Clin Oncol 9: 1692-1703.

    CAS  Google Scholar 

  90. Reed E, Sarosy G, Kohn E, Christian M, Link C, Davis P, Maher M and Jacob J (1996) A phase I study of paclitaxel and cytoxan in recurrent adenocarcinoma of the ovary. Gynecologic Oncology 61: 349-353.

    Article  CAS  Google Scholar 

  91. Reed E (1996) The chemotherapy of ovarian cancer. PPO Updates 10(7): 1-12.

    Google Scholar 

  92. Dabholkar M and Reed E (1995) Letter to the Editor (related to #95, above). Cancer Res, 55: 3933-3934.

    CAS  Google Scholar 

  93. Dabholkar M, Vionnet J and Bostick-Bruton F et al. (1995) Nucleotide excision repair mediates clinical resistance to platinum compounds in human ovarian cancer. Proc Am Assoc Cancer Res 36: 217, Abst #1295.

    Google Scholar 

  94. Reed E, Dabholkar M, Thompson C and Bostick-Bruton F (1998) Evidence for ‘order’ in the appearance of mRNAs of nucleotide excision repair genes in human ovarian cancer tissues. Submitted.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reed, E. Nucleotide excision repair and anti-cancer chemotherapy. Cytotechnology 27, 187–201 (1998). https://doi.org/10.1023/A:1008016922425

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008016922425

Navigation