Skip to main content
Log in

Fine mapping of T-cell determinants of bovine β-lactoglobin

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

T-cell recognition sites, i.e. T-cell determinants, of bovine β-lactoglobulin, a major allergen in milk, were analyzed in detail. For this purpose, we prepared primary cultures of lymph node cells from three strains of mice, C57BL/6 (H-2b), C3H/HeN (H-2k), and BALB/c (H-2d), and examined the proliferative response of these cells to a complete set of overlapping 15-mer peptides which covered the entire sequence of β-lactoglobulin by shifting in single amino acid steps. We were able to determine the putative core sequence of each T-cell determinant and estimate its relative importance. In the case of C57BL/6 mice, dominant, subdominant, and minor determinants were identified as residues 122–130, 16–26, and 108–122, respectively, as represented by their core sequences. Each determinant peptide induced the production of interferon-γ, the amount of which showed a correlation with the intensity of the proliferative response induced by each determinant. In the case of C3H/HeN mice, a dominant determinant comprised of residues 140–148 was identified together with three subdominant and two minor determinants. Dominant T-cell determinants recognized in BALB/c mice were identified as residues 67–75, 71–79, and 80–88, and six other regions were identified as subdominant determinants. Comparisons between our results and the determinants predicted from relevant MHC-binding motifs reported to date revealed the inadequacy of the motifs in predicting even the dominant determinants. The information obtained by complete mapping of T-cell determinants as done in this study is expected to be helpful in establishment and evaluation of new prediction methods and also may contribute to the development of a new approach to control immune responses by manipulation of the T-cell determinants of allergens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbas AK, Murphy KM and Sher A (1996) Functional diversity of helper T lymphocytes. Nature 383: 787–793.

    Article  PubMed  CAS  Google Scholar 

  • Adorini L, Appella E, Doria G and Nagy ZA (1988) Mechanisms influencing the immunodominance of T cell determinants. J Exp Med 168: 2091–2104.

    Article  PubMed  CAS  Google Scholar 

  • Bellone M, Ostlie N, Lei S and Conti-Tronconi BM (1991) Experimental myasthenia gravis in congenic mice. Sequence mapping and H-2 restriction of T helper epitopes on the a subunits of Torpedo californica and murine acetylcholine receptors. Eur J Immnol 21: 2303–2310.

    CAS  Google Scholar 

  • Cherwinski HM, Schumacher JH, Brown KD and Mosmann TR (1987) Two types of mouse helper T cell clone. III. Further differences in lymphokine synthesis between Th1 and Th2 clones revealed by RNA hybridization, functionally monospecific bioassays, and monoclonal antibodies. J Exp Med 166: 1229–1244.

    Article  PubMed  CAS  Google Scholar 

  • De Magistris M, Alexander J, Coggeshall M, Altman A, Gaeta FC, Grey HM and Sette A (1992) Antigen analog-major histocompatibility complexes act as antagonists of the T-cell receptor. Cell 68: 625–634.

    Article  PubMed  CAS  Google Scholar 

  • DiBrino M, Tsuchida T, Turner RV, Kenneth CP, Coligan JE and Biddison WE (1993) HLA-A1 and HLA-A3 T cell epitopes derived from influenza virus proteins predicted from peptide binding motifs. J Immnol 151: 5930–5935.

    CAS  Google Scholar 

  • Evavold BD and Allen PM (1991) Separation of IL-4 production from Th cell proliferation by an altered T cell receptor ligand. Science 252: 1308–1310.

    PubMed  CAS  Google Scholar 

  • Fairchild PJ, Thorpe CJ, Travers PJ and Wraith DC (1994) Modulation of the immune response with T-cell epitopes: the ultimate goal for specific immunotherapy of autoimmune disease. Immunology 81: 487–496.

    PubMed  CAS  Google Scholar 

  • Flower DR (1994) The lipocalin protein family: a role in cell regulation. FEBS lett 354: 7–11.

    Article  PubMed  CAS  Google Scholar 

  • Fremont DH, Hendrickson WA, Marrack P and Kappler J (1996) Structures of an MHC class II molecules with covalently bound single peptides. Science 272: 1001–1004.

    PubMed  CAS  Google Scholar 

  • Fremont DH, Matsumura M, Stura EA, Peterson PA and Wilson IA (1992) Crystal structures of two viral peptides in complex with murine MHC class I H-2Kb. Science 257: 919–927.

    PubMed  CAS  Google Scholar 

  • Gammon G, Geysen HM, Apple RJ, Pickett E, Palmer M, Ametani A and Sercarz EE (1991) T cell determinant structure: cores and determinant envelopes in three mouse major histocompatibility complex haplotypes. J Exp Med 173: 609–617.

    Article  PubMed  CAS  Google Scholar 

  • Gammon G, Klotz J, Ando D and Sercarz EE (1990) The T cell repertoire to a multideterminant antigen. Clonal heterogeneity of the T cell response, variation between syngeneic individuals, and in vitro selection of T cell specificities. J Immunol 144: 1571–1577.

    PubMed  CAS  Google Scholar 

  • Garboczi DN, Ghosh P, Utz U, Fan QR, Biddison WE and Wiley DC (1996) Structure of the complex between human T cell receptor, viral peptide and HLA A2. Nature 384: 134–141.

    Article  PubMed  CAS  Google Scholar 

  • Garcia KC, Degano M, Stanfield RL, Brunmark A, Jackson MR, Peterson PA, Teyton L and Wilson IA (1996) An αβ T cell receptor structure at 2.5 angstrom and its orientation in the TCR-MHC complex. Science 274: 209–219.

    Article  PubMed  CAS  Google Scholar 

  • Germain RN (1994) MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell 76: 287–299.

    Article  PubMed  CAS  Google Scholar 

  • Hattori M, Ametani A, Katakura Y, Shimizu M and Kaminogawa S (1993) Unfolding/refolding studies on bovine β-lactoglobulin with monoclonal antibodies as probes. Does a renatured protein completely refold? J Biol Chem. 268: 22414–22419.

    PubMed  CAS  Google Scholar 

  • Hisatsune T, Nishijima K, Minai Y, Kohyama M and Kaminogawa S (1994) Autoreactive CD8+ T cell clones producing immune suppressive lymphokines IL-10 and interferon-γ. Cell Immunol 154: 181–192.

    Article  PubMed  CAS  Google Scholar 

  • Hobohm U and Meyerhans A (1993) A pattern search method for putative anchor residues in T cell epitopes. Eur J Immunol 23: 1271–1276.

    PubMed  CAS  Google Scholar 

  • Kaminogawa S (1996) Food Allergy, Oral Tolerance and Immunomodulation — Their Molecular and Cellular Mechanisms. Biosci Biotech Biochem 60: 1749–1756.

    Article  CAS  Google Scholar 

  • Kaminogawa S, Shimizu M, Ametani A, Hattori M, Ando O, Hachimura S, Nakamura Y, Totsuka M and Yamauchi K (1989) Monoclonal antibodies as probes for monitoring the denaturation process of bovine β-lactoglobulin. Biochim Biophys Acta 998: 50–56.

    PubMed  CAS  Google Scholar 

  • Katakura Y, Totsuka M, Ametani A and Kaminogawa S (1994) Tryptophan-19 of β-lactoglobulin, the only residue completely conserved in the lipocalin superfamily, is not essential for binding retinol, but relevant to stabilizing bound retinol and maintaining its structure. Biochim Biophys Acta 1207: 58–67.

    PubMed  CAS  Google Scholar 

  • Kolde HJ and Braunitzer G (1983) The primary structure of ovine β-lactoglobulin 2. Discussion and genetic aspects. Milchwissenschaft 38: 70–73.

    CAS  Google Scholar 

  • Maeji NJ, Bray AM and Geysen HM (1990) Multi-pin peptide synthesis strategy for T cell determinant analysis. J Immunol Methods 134: 23–33.

    Article  PubMed  CAS  Google Scholar 

  • Nelson CA, Roof RW, McCourt DW and Unanue ER (1992) Identification of the naturally processed form of hen egg white lysozyme bound to the murine major histocompatibility complex class II molecule I-Ak. Proc Natl Acad Sci USA 89: 7380–7383.

    Article  PubMed  CAS  Google Scholar 

  • Nelson CA, Viner NJ, Young SP, Petzold SJ and Unanue ER (1996) A negatively charged anchor residue promotes high affinity binding to the MHC class II molecule I-Ak. J Immunol 157: 755–762.

    PubMed  CAS  Google Scholar 

  • Pamer EG, Harty JT and Bevan MJ (1991) Precise prediction of a dominant class I MHC-restricted epitope of Listeria monocytogenes. Nature 353: 852–855.

    Article  PubMed  CAS  Google Scholar 

  • Rammensee HG, Friede T and Stevanoviic S (1995) MHC ligands and peptide motifs: first listing. Immunogenetics 41: 178–228.

    Article  PubMed  CAS  Google Scholar 

  • Reay PA, Kantor RM and Davis MM (1994) Use of global amino acid replacements to define the requirements for MHC binding and T cell recognition of moth cytochrome c(93–103). J Immunol 152: 3946–3957.

    PubMed  CAS  Google Scholar 

  • Robinson JH, Atherton MC, Goodacre JA, Pinkney M, Weightman H and Kehoe MA (1991) Mapping T-cell epitopes in group A Streptococcal type 5M protein. Infect Immun 59: 4324–4331.

    PubMed  CAS  Google Scholar 

  • Rotzschke O, Falk K, Stevanovic S, Jung G, Walden P and Rammensee HG (1991) Exact prediction of a natural T cell epitope. Eur J Immunol 21: 2891–2894.

    PubMed  CAS  Google Scholar 

  • Rudensky AY, Preston-Hurlburt P, Al-Ramadi BK, Rothbard J and Janeway C, Jr (1992) Truncation variants of peptides isolated from MHC class II molecules suggest sequence motifs. Nature 359: 429–431.

    Article  PubMed  CAS  Google Scholar 

  • Schild H, Gruneberg U, Pougialis G, Wallny HJ, Keilholz W, Stevanovic S and Rammensee HG (1995) Natural ligand motifs of H-2E molecules are allele specific and illustrate homology to HLA-DR molecules. Int Immunol 7: 1957–1965.

    PubMed  CAS  Google Scholar 

  • Sette A, Buus S, Appella E, Smith JA, Chesnut R, Miles C, Colon SM and Grey HM (1989) Prediction of major histocompatibility complex binding regions of protein antigens by sequence pattern analysis. Proc Natl Acad Sci USA 86: 3296–3300.

    Article  PubMed  CAS  Google Scholar 

  • Silver ML, Guo HC, Strominger JL and Wiley DC (1992) Atomic structure of a human MHC molecule presenting an influenza virus peptide. Nature 360: 367–369.

    Article  PubMed  CAS  Google Scholar 

  • Spitalny GL and Havell EA (1984) Monoclonal antibody to murineγ interferon inhibits lymphokine-induced antiviral and macrophage tumoricidal activities. J Exp Med 159: 1560.

    Article  PubMed  CAS  Google Scholar 

  • Stern LJ, Brown JH, Jardetzky TS, Gorga JC, Urban RG, Strominger JL and Wiley DC (1994) Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature 368: 215–221.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Yamauchi K and Kaminogawa S (1990) T cell recognition of β-lactoglobulin. Agric Biol Chem 54: 691.

    PubMed  CAS  Google Scholar 

  • Taylor SL (1986) Immunologic and allergic properties of cow's milk proteins in human. J Food Protect 49: 239–250.

    Google Scholar 

  • Tisch R and McDevitt HO (1994) Antigen-specific immunotherapy: is it a real possibility to combat T-cell-mediated autoimmunity? Proc Natl Acad Sci USA 91: 437–438.

    Article  PubMed  CAS  Google Scholar 

  • Totsuka M, Katakura Y, Shimizu M, Kumagai I, Miura K and Kaminogawa S (1990) Expression and secretion of bovine β-lactoglobulin in Saccharomyces cerevisiae. Agric Biol Chem 54: 3111–3116.

    PubMed  CAS  Google Scholar 

  • Tsuji N, Kurisaki J, Mizumachi K and Kaminogawa S (1993) Localization of T-cell determinants on bovine β-lactoglobulin. Immunol lett 37: 215–221.

    Article  PubMed  CAS  Google Scholar 

  • Wall KA, Hu JY, Currier P, Southwood S, Sette A and Infante AJ (1994) A disease-related epitope of Torpedo acetylcholine receptor. Residues involved in I-Ab binding, self-nonself discrimination, and TCR antagonism. J Immunol 152: 4526–4536.

    PubMed  CAS  Google Scholar 

  • Weiner HL, Friedman A, Miller A, Khoury SJ, Al-Sabbagh S, Santos L, Sayegh M, Nussenblatt RB, Trentham DE and Hafler DA (1994) Oral tolerance: immunologic mechanisms and treatment of animal and human organ-specific autoimmune diseases by oral administration of autoantigens. Ann Rev Immunol 12: 809–837.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Totsuka, M., Ametani, A. & Kaminogawa, S. Fine mapping of T-cell determinants of bovine β-lactoglobin. Cytotechnology 25, 101–113 (1997). https://doi.org/10.1023/A:1007967901271

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007967901271

Navigation