Skip to main content
Log in

Almost Complex Poisson Manifolds

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

In this paper we consider complex Poisson manifolds and extendthe concept of complex Poisson structure, due to Lichnerowicz to themore general concept of almost complex Poisson structures. Examples ofsuch structures and the associated generalized foliation are given.Moreover, some properties of the complex symplectic structures as wellas of the holomorphic complex Poisson structures are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baider, A., Churchill, R. C. and Rod, D. L.: Monodromy and non integrability in complex Hamiltonian dynamics, J. Dynamics Differential Equations 2(1990), 451–481.

    Google Scholar 

  2. Bhaskara, K. H. and Viswanath, K.: Poisson Algebras and Poisson Manifolds, Res. Notes in Math. 174, Pitman, London, 1988.

    Google Scholar 

  3. Beauville, A.: Variétés Kählèriennes dont la 1ére classe de Chern est nulle, J. Differential Geom. 18(1983), 755–782.

    Google Scholar 

  4. Brylinski, J.-L. and Zuckerman, G.: The outer derivation of complex Poisson manifolds, J. Reine Angew. Math. 506(1999), 181–189.

    Google Scholar 

  5. Cannas da Silva, A. and Weinstein, A.: GeometricModels for Noncommutative Algebras, Math. Lecture Notes Ser., Berkeley, Amer. Math. Soc., 1999.

  6. Cordero, L. A., Fernández, M., Gray, A. and Ugarte, L.: Compact nilmanifolds with nilpotent complex structure: Dolbeault cohomology, Trans. Amer. Math. Soc.to appear.

  7. Chevalley, C. and Eilenberg, S.: Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63(1948), 85–124.

    Google Scholar 

  8. Everitt, W. N. and Markus, L.: Complex symplectic geometry with applications to ordinary differential operators, Trans. Amer. Math. Soc. 351(1999), 4905–4945.

    Google Scholar 

  9. Fernández, M. and Gray, A.: Compact symplectic solvmanifolds not admitting complex structures, Geom. Dedicata 34(1990), 295–299.

    Google Scholar 

  10. Fernández, M., Gotay, M. and Gray, A.: Compact parallelizable four dimensional symplectic and complex manifolds, Proc. Amer. Math. Soc. 103(1988), 1209–1212.

    Google Scholar 

  11. Grabowski, J. and Urbanski, P.: Tangent lifts of Poisson and related structures, J. Phys. A:Math. Gen. 28(1995), 6743–6777.

    Google Scholar 

  12. Guan, D.: Examples of compact holomorphic symplectic manifolds which admit no Kähler structure, in T. Mabuchi, J. Noguchi and T. Ochiai (eds), Geometry and Analysis on Complex Manifolds, World Scientific, Singapore, 1994, pp. 63–74; II: Invent. Math. 121(1) (1995), 135– 145; III: Intern. J. Math. 6(5) (1995), 709–718.

    Google Scholar 

  13. Hector, G., Macías, E. and Saralegi,M.: Lemme de Moser feuilleté et classification des variétés de Poisson régulieres, Publ. Matemátiques 33(1989), 423–430.

    Google Scholar 

  14. Ibáñez, R., de León, M., Marrero, J. C., Martín de Diego, D.: Dynamics of Generalized Poisson and Nambu–Poisson brackets, J. Math. Phys. 38(5) (1997), 2332–2344.

    Google Scholar 

  15. Ibáñez, R., de León, M., Marrero, J. C. and Padrón, E.: Leibniz algebroid associated with a Nambu–Poisson structure, J. Phys. A: Math. Gen. 32(1999), 8129–8144.

    Google Scholar 

  16. Ibrahim, J. and Lichnerowicz, A.: Fibrés vectoriels holomorphe, structures symplectiques ou modulaires complexes exactes, C. R. Acad. Sci. Paris 283(1976), 713–717.

    Google Scholar 

  17. Iwasaki, K.: Fuchsian moduli on a Riemann surface – Its Poisson structure and Poincaré– Lefschetz duality, Pacific J. Math. 155(2) (1992), 319–340.

    Google Scholar 

  18. Kobayashi, S.: Differential Geometry of Complex Vector Bundles, Princeton University Press, Princeton, NJ, 1987.

    Google Scholar 

  19. Kobayashi, S. and Nomizu, K.: Foundations of Differential Geometry, Vol. II, John Wiley & Sons, New York, 1969.

    Google Scholar 

  20. Korotkin, D. and Samtleben, H.: On the quantization of isomonodromic deformations on the torus, Internat. J. Modern Phys. A 12(11) (1997), 2013–2029.

    Google Scholar 

  21. Lempert, L.: Symmetries and other transformations of the complex Monge–Ampére equation, Duke Math. J. 52(1985), 869–885.

    Google Scholar 

  22. Libermann, P. and Marle, Ch. M.: Symplectic Geometry and Analytical Mechanics, Kluwer Acad. Publ., Dordrecht, 1987.

    Google Scholar 

  23. Lichnerowicz, A.: Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential Geom 12(1977), 253–300.

    Google Scholar 

  24. Lichnerowicz, A.: Variétés de Jacobi et espaces homogènes de contact complexes, J. Math. Pures Appl. 67(9) (1988), 131–173.

    Google Scholar 

  25. Mackenzie, K.: Lie Groupoids and Lie Algebroids in Differential Geometry, London Math. Soc. Lecture Notes Ser. 124, Cambridge University Press, Cambridge, 1987.

    Google Scholar 

  26. Markushevich, D. G.: Integrable symplectic structures on compact complex manifold, Math. USSR-Sb. 59(2) (1988), 459–469.

    Google Scholar 

  27. Nunes da Costa, J. M.: Reduction of complex Poisson manifolds, Portugaliae Math. 54(4) (1997), 467–476.

    Google Scholar 

  28. Panasyuk, A.: Isomorphisms of some complex Poisson brackets, Ann. Global Anal. Geom. 15(1997), 313–324.

    Google Scholar 

  29. Przybylski, B.: Complex Poisson manifolds, in O. Kowalski and D. Krupta (eds), Proceedings of a Conference on Differential Geometry and Its Applications, Opava, Czechoslovakia, 1992, Silesian University, Opava, 1993, pp. 227–241.

  30. Sánchez de Alvarez, G.: Poisson brackets and dynamics, in R. Bamon, R. Labarca, J. Lewowicz and J. Palis (eds), Dynamical Systems, Santiago de Chile, 1990, Pitman Res. Notes Math. Ser. 285, Longmann Sci. Tech., Harlow, 1993, pp. 230–249.

    Google Scholar 

  31. Sussmann, H. J.: Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc. 180(1973), 171–188.

    Google Scholar 

  32. Vaisman, I.: Lectures on the Geometry of PoissonManifolds, Progress inMath. 118, Birkhäuser, Basel, 1994.

    Google Scholar 

  33. Verbitsky, M.: Hyper-Kähler embeddings and holomorphic symplectic geometry, J. Algebraic Geom. 5(3) (1996), 401–413.

    Google Scholar 

  34. Weinstein, A.: The local structure of Poisson manifolds, J. Differential Geom. 18(1983), 523–557. Errata et addenda: J. Differential Geom. 22(1985), 255.

    Google Scholar 

  35. Yano, K. and Ishihara, S.: Tangent and Cotangent Bundles, Marcel Dekker, New York, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cordero, L.A., Fernández, M., Ibáñez, R. et al. Almost Complex Poisson Manifolds. Annals of Global Analysis and Geometry 18, 265–290 (2000). https://doi.org/10.1023/A:1006747701433

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006747701433

Navigation