Skip to main content
Log in

Surfaces in Conformal Geometry

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

Properties of submanifolds are examined which remain invariantunder a conformal change of metric of the ambiant space. In particular,the Willmore energy functional is discussed as is the Willmoreconjecture for tori.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babich, M. and Bobenko, A.: Willmore tori with umbilic lines and minimal hypersurfaces in hyperbolic space, Duke Math. J. 72(1) (1993),151–185.

    Google Scholar 

  2. Bär, C.: Extrinsic bounds for eigenvalues of the Dirac operator, Ann. Global Anal. Geom. 16(6) (1998), 573–596.

    Google Scholar 

  3. Blaschke, W.: Vorlesungen über Differentialgeometrie, III, Springer-Verlag, Berlin, 1929.

    Google Scholar 

  4. Bobenko, A. I.: Surfaces in terms of 2 by 2 matrices: Old and new integrable cases, in A. Fordy and J. C. Wood (eds), Harmonic Maps and Integrable Systems, Aspects Math. E23, Vieweg, Braunschweig, 1994, pp. 83–127.

  5. Bogdanov, L. V.: The Veselov–Novikov equation as a natural generalization of the Korteweg– de Vries equation, Teoret. Mat. Fiz. 70(2) (1987), 309–314 [in Russian]. English translation: Theoret. Math. Phys. 70(2) (1987), 219–223.

    Google Scholar 

  6. Bogdanov, L. V., and Konopelchenko, B. G.: Generalized integrable hierarchies and Combescure symmetry transformations, J. Phys. A 30(5) (1997), 1591–1603.

    Google Scholar 

  7. Bryant, R.: A duality theorem forWillmore surfaces, J. Differential Geom. 20(1) (1984), 23–53.

    Google Scholar 

  8. Bryant, R.: Surfaces in conformal geometry, in The Mathematical Heritage of Hermann Weyl(Durham, NC, 1987), Proc. Sympos. Pure Math. 48, Amer. Math. Soc., Providence, 1988, pp. 227–240.

  9. Carroll, R. and Konopelchenko, B.: Generalized Weierstrass–Enneper inducing, conformal immersions, and gravity, Internat. J. Modern Phys. A11(7) (1996), 1183–1216.

    Google Scholar 

  10. Castro, I. and Urbano, F.: Willmore Lagrangian surfaces and the Whitney sphere, Preprint, 1998.

  11. Darboux, G.: Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, 1894, reprinted, Chelsea, New York, 1972.

  12. El Soufi, A. and Ilias, S.: Immersions minimales, première valeur propre du laplacien et volume conforme, Math. Ann. 275(2) (1986), 257–267.

    Google Scholar 

  13. Ferus, D. and Pedit, F.: S 1-equivariant minimal tori in S 4 and S 1-equivariant Willmore tori in S 3, Math. Z. 204(2) (1990), 269–282.

    Google Scholar 

  14. Ferus, D., Pedit, F. and Pinkall, U.: Rudiments of quaternionic algebraic geometry, Preprint, 1998.

  15. Ferus, D., Pedit, F., Pinkall, U. and Sterling, I.: Minimal tori in S 4, J. reine angew. Math. 429 (1992), 1–47.

    Google Scholar 

  16. Grinevich, P. G. and Schmidt, M. U.: Conformal invariant functionals of immersions of tori into ℝ 3, J. Geom. Phys. 26(1–2) (1998), 51–78.

    Google Scholar 

  17. Hertrich-Jeromin, U. and Pinkall, U.: Ein Beweis der Willmoreschen Vermutung für Kanaltori, J. reine angew. Math. 430(1991), 21–34.

    Google Scholar 

  18. Hitchin, N.: Harmonic maps from a 2–torus to the 3–sphere, J. Differential Geom. 31(3) (1990), 627–710.

    Google Scholar 

  19. Kamberov, G., Pedit, F. and Pinkall, U.: Bonnet pairs and isothermic surfaces, Duke Math. J. 92(3), (1998), 637–644.

    Google Scholar 

  20. Karcher, H. and Pinkall, U.: Die Boysche Fläche in Oberwolfach, Mitteilungen der DMV 1(1997), 45–47.

    Google Scholar 

  21. Konopelchenko, B. G.: Induced surfaces and their integrable dynamics, Stud. Appl. Math. 96(1) (1996), 9–51.

    Google Scholar 

  22. Konopelchenko, B. G. and Taimanov, I. A.: Generalized Weierstrass formulae, soliton equations and Willmore surfaces, I: Tori of revolution and the mKdV equation, E-print math.DG/9506111, 1995, available from http://front.math.ucdavis.edu.

  23. Kusner, R.: Conformal geometry and complete minimal surfaces, Bull. Amer. Math. Soc. 17(1987), 291–295.

    Google Scholar 

  24. Kusner, R.: Comparison surfaces for the Willmore problem, Pacific J. Math. 138(2) (1989), 317–345.

    Google Scholar 

  25. Kusner, R.: Estimates for the biharmonic energy on unbounded planar domains, and the existence of surfaces of every genus that minimize the squared-mean-curvature integral, in Elliptic and parabolic methods in geometry(Minneapolis, MN, 1994), A. K. Peters, Wellesley, MA, 1996, pp. 67–72.

    Google Scholar 

  26. Langer, J. and Singer, D.: On the total squared curvature on closed curves in space forms, J. Differential Geom. 20(1984), 1–22.

    Google Scholar 

  27. Langer, J. and Singer, D.: Curves in the hyperbolic plane and mean curvature of tori in 3–space, Bull. London Math. Soc. 16(1984), 531–534.

    Google Scholar 

  28. Langer, J. and Singer, D.: Knotted elastic curves in ℝ3, J. London Math. Soc. (2) 30(3) (1984), 512–520.

    Google Scholar 

  29. Langevin, R. and Rosenberg, H.: On curvature integrals and knots, Topology 15(1976), 405–416.

    Google Scholar 

  30. Lawson, H. B., Jr.: Complete minimal surfaces in S 3, Ann. of Math. (2) 92(1970), 335–374.

    Google Scholar 

  31. Li, P. and Yau, S.-T.: A new conformal invariant and its application to the Willmore conjecture and the first eigenvalue of compact surfaces, Invent. Math. 69(1982), 269–291.

    Google Scholar 

  32. Minicozzi, W. P., II: The Willmore functional on Lagrangian tori: Its relation to area and existence of smooth minimizers, J. Amer. Math. Soc. 8(4) (1995), 761–791.

    Google Scholar 

  33. Montiel, S. and Ros, A.: Minimal immersions of surfaces by the first eigenfunctions and conformal area, Invent. Math. 83(1) (1985), 153–166.

    Google Scholar 

  34. Palmer, B.: Willmore surfaces with circular boundaries, Preprint, University of Durham, 1998.

  35. Pedit, F. and Pinkall, U.: Quaternionic analysis on Riemann surfaces and differential geometry, Proc. International Congress of Mathematicians, Vol. II(Berlin, 1998), Doc. Math. 1998, Extra Vol. II, 389–400 (electronic).

    Google Scholar 

  36. Pinkall, U.: Hopf tori, Invent. Math. 81(1985), 379–386.

    Google Scholar 

  37. Pinkall, U. and Sterling, I.: Willmore surfaces, Math. Intelligencer 9(1987), 38–43.

    Google Scholar 

  38. Richter, J.: Conformal maps of a Riemann surface into the space of quaternions, Doctoral dissertation, Technical University Berlin, 1997.

  39. Ros, A.: The Willmore conjecture in real projective space, Preprint, 1997.

  40. Shiohama, K. and Takagi, A.: A characterization of the standard torus in E 3, J. Differential Geom. 4(1970), 477–485.

    Google Scholar 

  41. Simon, L. M.: Existence of surfaces minimizing the Willmore functional, Comm. Anal. Geom. 1(2) (1993), 281–326.

    Google Scholar 

  42. Taimanov, I. A.: Modified Novikov–Veselov equation and differential geometry of surfaces, in Solitons, Geometry, and Topology: On the Crossroad, Amer. Math. Soc. Transl. Ser. 2 179, Amer. Math. Soc., Providence, 1997, pp. 133–151.

  43. Taimanov, I. A.: Surfaces of revolution in terms of solitons, Ann. Global Anal. Geom. 15(5) (1997), 419–435.

    Google Scholar 

  44. Thomsen, G.: Ñber Konforme Geometrie, I: Grundlagen der Konformen Flächentheorie, Abh. Math. Sem. Hamburg 3 (1923), 31–56.

    Google Scholar 

  45. Topping, P.: Towards the Willmore conjecture, Preprint, 1998.

  46. Weiner, J. L.: On a problem of Chen, Willmore et al., Indiana Univ. Math. J. 27(1) (1978), 19–35.

    Google Scholar 

  47. White, J. H.: A global invariant of conformal mappings in space, Proc. Amer. Math. Soc. 38(1973), 162–164.

    Google Scholar 

  48. Willmore, T. J.: Note on embedded surfaces, Ann. Stiint. Univ. Al. I. Cuza, Ia¸si, Sect. I a Mat.(N.S.) 11B(1965), 493–496.

    Google Scholar 

  49. Willmore, T. J.: Mean curvature of Riemannian immersions, J. London Math. Soc. (2) 3(1971), 307–310.

    Google Scholar 

  50. Willmore, T. J.: Riemannian Geometry, Clarendon Press, Oxford, 1993.

    Google Scholar 

  51. Yau, S. T.: Problem section, in Shing-Tung Yau (ed.), Seminar on Differential Geometry, Ann. of Math. Studies 102, Princeton University Press, Princeton, 1982, pp. 669–706.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willmore, T.J. Surfaces in Conformal Geometry. Annals of Global Analysis and Geometry 18, 255–264 (2000). https://doi.org/10.1023/A:1006717506186

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006717506186

Navigation