Skip to main content
Log in

Spin Spaces, Lipschitz Groups, and Spinor Bundles

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

It is shown that every bundle Σ → M of complex spinormodules over the Clifford bundle Cl(g) of a Riemannian space(M, g) with local model (V, h)is associated with an lpin(‘Lipschitz’) structure on M, this being a reduction of theO(h)-bundle of all orthonormal frames on M to the Lipschitzgroup Lpin(h) of all automorphisms of a suitably defined spinspace. An explicit construction is given of the total space of theLpin(h)-bundle defining such a structure. If the dimension mof M is even, then the Lipschitz group coincides with the complexClifford group and the lpin structure can be reduced to a pin c structure. If m = 2n − 1, then a spinor module Σ on M is of the Cartan type: its fibres are 2 n -dimensional anddecomposable at every point of M, but the homomorphism of bundlesof algebras Cl(g) → End Σ globally decomposes if, andonly if, M is orientable. Examples of such bundles are given. Thetopological condition for the existence of an lpin structure on anodd-dimensional Riemannian manifold is derived and illustrated by theexample of a manifold admitting such a structure, but no pin c structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah, M. F., Bott, R. and Shapiro, A.: Clifford modules, Topology 3, Suppl. 1 (1964), 3–38.

    Google Scholar 

  2. Baum, H.: Spin-Strukturen und Dirac-Operatoren über pseudoriemannschen Mannigfaltigkeiten, Teubner, Leipzig, 1981.

  3. Berline, N., Getzler, E. and Vergne, M.: Heat Kernels and Dirac Operators, Springer-Verlag, New York, 1992.

    Google Scholar 

  4. Cahen, M., Gutt, S. and Trautman, A.: Pin structures and the modified Dirac operator, J. Geom. Phys. 17(1995), 283–297.

    Google Scholar 

  5. Cartan, É.: Leçons sur la théorie des spineurs, Vols. 1 and 2, Exposés de Géométrie, Hermann, Paris, 1938.

    Google Scholar 

  6. Chevalley, C.: The Algebraic Theory of Spinors, Columbia Univ. Press, New York, 1954.

    Google Scholar 

  7. Fock, V.: Geometrisierung der Diracschen Theorie des Elektrons, Z. Phys. 57(1929), 261–277.

    Google Scholar 

  8. Friedrich, Th.: Die erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung, Math. Nachr. 97(1980), 117–146.

    Google Scholar 

  9. Friedrich, Th.: Dirac-Operatoren in der Riemannschen Geometrie, Vieweg, Braunschweig, 1997.

    Google Scholar 

  10. Hirzebruch, F.: Topological Methods in Algebraic Geometry, 3rd edn, Springer-Verlag, New York, 1966.

    Google Scholar 

  11. Ivanenko, D. and Landau, L. D.: Zur Theorie des magnetischen Elektrons, Z. Physik 48(1928), 340–348.

    Google Scholar 

  12. Kähler, E.: Der innere und äussere Differentialkalkül, Abh. Akad. Wiss. Berlin(Math.-Phys.) 4(1960).

  13. Karoubi, M.: Algèbres de Clifford et K-théorie, Ann. Sci. École Norm. Sup. 4ème sér. 1(1968), 161–270.

    Google Scholar 

  14. Karrer, G.: Einführung von Spinoren auf Riemannschen Mannigfaltigkeiten, Ann. Acad. Sci. Fenn. Ser. A, Math. 336(5) (1963), 1–16.

    Google Scholar 

  15. Karrer, G.: Darstellung von Cliffordbündeln, Ann. Acad. Sci. Fenn. Ser. A, Math. 521(1973), 1–34.

    Google Scholar 

  16. Kobayashi S. and Nomizu, K.: Foundations of Differential Geometry, Vols. I and II, Interscience, New York, 1963, 1969.

    Google Scholar 

  17. Lang, S.: Introduction to Differentiable Manifolds, Wiley, New York, 1962.

    Google Scholar 

  18. Lawson, H. B. and Michelsohn, M.-L.: Spin Geometry, Princeton Univ. Press, Princeton, NJ, 1989.

    Google Scholar 

  19. Milnor, J. W. and Stasheff, J. D.: Characteristic Classes, Ann. Math. Stud. 76, Princeton Univ. Press, Princeton, NJ, 1974.

    Google Scholar 

  20. Schrödinger, E.: Diracsches Elektron im Schwerefeld I, Sitzungsber. preuss. Akad. Wiss., phys. math. Kl. XI(1932), 105–128.

    Google Scholar 

  21. Steenrod, N.: The Topology of Fibre Bundles, Princeton Univ. Press, Princeton, NJ, 1951.

    Google Scholar 

  22. Thomas, E.: On the cohomology of the real Grassmann complex and the characteristic classes of n-plane bundles, Trans. Amer. Math. Soc. 96(1960), 67–89.

    Google Scholar 

  23. Trautman, A.: Spinors and the Dirac operator on hypersurfaces. I. General theory, J. Math.Phys. 33(1992), 4011–4019.

    Google Scholar 

  24. Weil, A.: OEuvres scientifiques. Collected Papers, Vol. II (1951–1964), Springer-Verlag, New York, 1979, pp. 557–561; reprinted from Ann. of Math. 69(1959), 247–251.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedrich, T., Trautman, A. Spin Spaces, Lipschitz Groups, and Spinor Bundles. Annals of Global Analysis and Geometry 18, 221–240 (2000). https://doi.org/10.1023/A:1006713405277

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006713405277

Navigation