Annals of Global Analysis and Geometry

, Volume 17, Issue 4, pp 315–328 | Cite as

On Einstein Manifolds of Positive Sectional Curvature

  • Matthew J. Gursky
  • Claude LeBrun


Let (M, g) be a compact oriented four-dimensional Einstein manifold. If M has positive intersection form and g has non-negative sectional curvature, we show that, up to rescaling and isometry, (M, g) is ℂℙ2, with its standard Fubini–Study metric.

Einstein manifold scalar curvature sectional curvature Weyl curvature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, M.: The L 2 structure of moduli spaces of Einstein metrics on 4-manifolds, Geom. Funct. Anal. 2 (1992), 29–89.Google Scholar
  2. 2.
    Besse, A.: Einstein Manifolds, Springer-Verlag, Berlin, 1987.Google Scholar
  3. 3.
    Bieberbach, L.: Über die Bewegungsgruppen der Euklidischen Räume I, Math. Ann. 70 (1911), 297–336; II, 72 (1912), 400–412.Google Scholar
  4. 4.
    Bishop, R. L. and Crittenden, R. J.: Geometry of Manifolds, Academic Press, New York, 1964.Google Scholar
  5. 5.
    Bourgignon, J. P.: Les variétés de dimension 4 à signature non nulle dont la courbure est harmonique sont d'Einstein, Invent. Math. 63 (1981), 263–286.Google Scholar
  6. 6.
    Cheeger, J.: Finiteness theorems for Riemannian manifolds, Amer. J. Math. 92 (1970), 61–74.Google Scholar
  7. 7.
    Derdziński, A.: Self-dual Kähler manifolds and Einstein manifolds of dimension four, Comp. Math. 49 (1983), 405–433.Google Scholar
  8. 8.
    DeTurck, D. and Kazdan, J.: Some regularity theorems in Riemannian geometry, Ann. Sci. École Norm. Sup. 14 (1981), 249–260.Google Scholar
  9. 9.
    Freedman, M.: On the topology of 4-manifolds, J. Differential Geom. 17 (1982), 357–454.Google Scholar
  10. 10.
    Friedrich, T. and Kurke, H.: Compact four-dimensional self-dual Einstein manifolds with positive scalar curvature, Math. Nachr. 106 (1982), 271–299.Google Scholar
  11. 11.
    Gursky, M.: The Weyl functional, DeRham cohomology, and Kähler-Einstein metrics, Preprint, 1996.Google Scholar
  12. 12.
    Gursky, M.: Four-manifolds with δW + = 0 and Einstein constants on the sphere, Preprint, 1997.Google Scholar
  13. 13.
    Gursky, M. and LeBrun, C.: Yamabe invariants and Spinc structures, Geom. Funct. Anal. (to appear).Google Scholar
  14. 14.
    Hitchin, N. J.: On compact four-dimensional Einstein manifolds, J. Differential Geom. 9 (1974), 435–442.Google Scholar
  15. 15.
    Hitchin, N. J.: Kählerian twistor spaces, Proc. London Math. Soc. 43 (1981), 133–150.Google Scholar
  16. 16.
    Koiso, N.: Rigidity and stability of Einstein metrics. The case of compact symmetric spaces, Osaka J. Math. 17 (1980), 51–73.Google Scholar
  17. 17.
    LeBrun, C.: Yamabe constants and the perturbed Seiberg-Witten equations, Comm. Anal. Geom. 5 (1997), 535–553.Google Scholar
  18. 18.
    Myers, S. B.: Riemannian manifolds with positive mean curvature, Duke Math. J. 8 (1941), 401–404.Google Scholar
  19. 19.
    Obata, M.: The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geom. 6 (1971), 247–258.Google Scholar
  20. 20.
    Penrose, R. and Rindler, W.: Spinors and Space-Time. Vol. 2: Spinor and Twistor Methods in Space-Time Geometry, Cambridge University Press, Cambridge, 1986.Google Scholar
  21. 21.
    Singer, I. M. and Thorpe, J. A.: The curvature of four-dimensional Einstein spaces, in Spencer, D. C. and Iyanaga, S. (eds), Global Analysis (Papers in Honor of K. Kodaira), University of Tokyo Press, Tokyo, 1969, pp. 355–365.Google Scholar
  22. 22.
    Synge, J. L.: On the connectivity of spaces of positive curvature, Quart. J. Math. 7 (1936), 316–320.Google Scholar
  23. 23.
    Thorpe, J. A.: Some remarks on the Gauss-Bonnet formula, J. Math. Mech. 18 (1969), 779–786.Google Scholar
  24. 24.
    Tian, G.: On Calabi's conjecture for complex surfaces with positive first Chern class, Invent. Math. 101 (1990), 101–172.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Matthew J. Gursky
    • 1
  • Claude LeBrun
    • 2
  1. 1.Department of MathematicsIndiana UniversityBloomingtonU.S.A.
  2. 2.Department of MathematicsState University of New YorkStony BrookU.S.A.

Personalised recommendations