Annals of Global Analysis and Geometry

, Volume 15, Issue 1, pp 71–100 | Cite as

Index Formulae for Pseudodifferential Operators with Discontinuous Symbols

  • Grigori V. Rozenblum


A class of zero order pseudodifferential operators on a closed manifold is considered, with symbols admitting a first kind discontinuity at a codimension one submanifold. A condition is found for such operators to be Fredholm. The formula for the index of such operators is derived, expressed in the topological terms.

C−-algebras index K-theory pseudodifferential operators 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atiyah, M. F.: Global theory of elliptic operators, in Proc. Int. Conf. Funct. Anal. Rel. Topics, Tokyo, 1970, pp. 21–30.Google Scholar
  2. 2.
    Blackadar, B.: K-Theory for Operator Algebras, MSRI Series, Vol. 5, Springer-Verlag, New York, 1986.Google Scholar
  3. 3.
    Boutet de Monvel, L.: Boundary problems for pseudodifferential operators, Acta Math. 126 (1971), 11–51.zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Baum, P. and Douglas, R. G.: K-homology and index theory. Proc. Symp. Pure Math. AMS 38, part 1 (1982), 117–173.zbMATHMathSciNetGoogle Scholar
  5. 5.
    Hörmander, L.: On the index of pseudodifferential operators, in Elliptische Differentialgleichungen, Vol. 11, Akademie-Verlag, Berlin, 1971, pp. 127–146.Google Scholar
  6. 6.
    Plamenevsky, B.: Algebras of Pseudodifferential Operators, Kluwer, Dordrecht, 1989.Google Scholar
  7. 7.
    Plamenevsky, B. and Rozenblum, G.: On the index of pseudodifferential operators with isolated singularities in symbols, Leningrad Mathematical J. 2 (1991), 1085–1110.Google Scholar
  8. 8.
    Plamenevsky, B. and Rozenblum, G.: Topological characteristics of the algebra of singular integral operators on the circle, with discontinuous symbols, Peterburg Mathematical J. 3 (1992), 1089–1101.Google Scholar
  9. 9.
    Plamenevsky, B. and Rozenblum, G.: Pseudodifferential operators with discontinuous symbols: K-Theory and index formula, Functional Anal. Appl. (Funktsional. Anal. i Prilozhen.) 26 (1992), 266–275.CrossRefGoogle Scholar
  10. 10.
    Plamenevsky, B. and Senichkin, V.: On representations of the algebra of pseudodifferential operators with multi-dimensional discontinuities in symbols, Math. USSR Izvestiya 31 (1988), 143–169.CrossRefGoogle Scholar
  11. 11.
    Rempel, S. and Schulze, B.-W.: The Theory of Index for Elliptic Boundary Problems, Akademie-Verlag, Berlin, 1982.Google Scholar
  12. 12.
    Rempel, S. and Schulze, B. W.: A theory of pseudodifferential boundary value problems with discontinuity conditions, Annals of Global Anal. Geom. 2 (1984) 163–251, 289–384.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Grigori V. Rozenblum
    • 1
  1. 1.Department of MathematicsGöteborg UniversityGöteborgSweden

Personalised recommendations