Skip to main content
Log in

The Eta Invariant and the Connective K-Theory of the Classifying Space for Cyclic 2 Groups

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We use the eta invariant to study the connective K-theory groups ko m (B ) of the classifying space for the cyclic group ℤ where ℓ - 2ν ≥ 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah, M. F.: K-Theory, W. A. Benjamin, New York, 1967.

    Google Scholar 

  2. Atiyah, M. F., Patodi, V. K. and Singer, I. M.: Spectral asymmetry and Riemannian geometry, I, Math. Proc. Cambridge Phil. Soc. 77 (1975), 43–69.

    Google Scholar 

  3. Bahri, A., Bendersky, M., Davis, D. and Gilkey, P.: The complex bordism of groups with periodic cohomology, Trans. Amer. Math. Soc. 316 (1989), 673–687.

    Google Scholar 

  4. Barrera-Yanez, E.: The eta invariant, equivariant bordism, connective K theory and manifolds with positive scalar curvature, Ph.D. Thesis, University of Oregon, 1997.

  5. Botvinnik, B. and Gilkey, P.: The Gromov-Lawson-Rosenberg conjecture: The twisted case, Houston J. Math. 23 (1997), 143–160.

    Google Scholar 

  6. Botvinnik, B., Gilkey, P. and Stolz, S.: The Gromov-Lawson-Rosenberg conjecture for groups with periodic cohomology, J. Differential Geom. 46 (1997), 374–405.

    Google Scholar 

  7. Donnelly, H.: Eta invariants for G spaces, Indiana Univ. Math. J. 27 (1978), 889–918.

    Google Scholar 

  8. Gilkey, P.: The eta invariant and the K theory of odd dimensional spherical space forms, Invent. Math. 76 (1984), 421–453.

    Google Scholar 

  9. Gilkey, P.: The Geometry of Spherical Space Form Groups, Series in Pure Math. 7, World Scientific, Singapore, 1989.

    Google Scholar 

  10. Gilkey, P. and Karoubi, M.: K theory for spherical space forms, Topology Appl. 25 (1987), 179–184.

    Google Scholar 

  11. Hashimoto, S.: On the connective K homology groups of the classifying spaces B Z/p 4, Publ. Res. Inst. Math. Sci. 19 (1983), 765–771.

    Google Scholar 

  12. Kobayashi, T., Murakami, S. and Sugawara, M.: Note on J groups of lens spaces, Hiroshima Math. J. 7 (1977), 387–407.

    Google Scholar 

  13. Kobayashi, T. and Sugawara, M.: Note on K O rings of lens spaces mod 2r, Hiroshima Math. J. 8 (1978), 85–90.

    Google Scholar 

  14. Lichnerowicz, A.: Spineurs harmoniques, C.R. Acad. Sci. Paris 257 (1963), 7–9.

    Google Scholar 

  15. Mahammed, N.: K-theorie des espaces lenticulaires, C.R. Acad. Sci. Paris 272 (1971), 1363–1365.

    Google Scholar 

  16. Mahammed, N., Piccinni, R. and Sutter, U.: Some Applications of Topological K Theory, North-Holland, Amsterdam, 1980.

    Google Scholar 

  17. Stolz, S.: Splitting certain MSpin module spectra, Topology 33 (1994), 159–180.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrera-Yanez, E., Gilkey, P.B. The Eta Invariant and the Connective K-Theory of the Classifying Space for Cyclic 2 Groups. Annals of Global Analysis and Geometry 17, 289–299 (1999). https://doi.org/10.1023/A:1006582107737

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006582107737

Navigation