Skip to main content
Log in

A Construction of Non-Split Supermanifolds

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

A construction is presented associating with any closed (1,1)-form ω on a complex manifold M a supermanifold, whose retract is the split supermanifold (M,Ω), where Ω is the sheaf of holomorphic forms on M. This supermanifold is non-split whenever ω is not ∂-exact. In particular, any complex line bundle L over M determines the supermanifold associated with the curvature form of a metric on L; it is non-split whenever the refined Chern class of L is non-zero. The case of a flag manifold M is studied in more details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Berezin, F. A.: Introduction to Superanalysis, Reidel, Dordrecht, 1987.

    Google Scholar 

  2. Bott, R.: Homogeneous vector bundles, Ann. Math. 66 (1957), 203–248.

    Google Scholar 

  3. Bott, R. and Chern, S. S.: Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections, Acta Math. 114 (1965), 71–112.

    Google Scholar 

  4. Frölicher, A. and Nijenhuis, A.: Theory of vector-valued differential forms, Part 1. Derivations in the graded ring of differential forms, Proc. Kon. Ned. Akad. Wet. Amsterdam 59 (1956), 540–564.

    Google Scholar 

  5. Green, P.: On holomorphic graded manifolds, Proc. Amer. Math. Soc. 85 (1982), 587–590.

    Google Scholar 

  6. Griffiths, P. R. and Harris, J.: Principles of Algebraic Geometry, J. Wiley & Sons, New York, 1978.

    Google Scholar 

  7. Kolář, I., Michor, P.W. and Slovák, J.: Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.

    Google Scholar 

  8. Kostant, B.: Lie algebra cohomology and the generalized Borel–Weil theorem, Ann. of Math. 74 (1961), 329–387.

    Google Scholar 

  9. Koszul, J.-L.: Sur la forme hermitienne canonique des espaces homogènes complexes, Canad. J. Math. 7 (1955), 562–576.

    Google Scholar 

  10. Manin, Yu. I.: Gauge Field Theory and Complex Geometry, Springer-Verlag, Berlin, 1988.

    Google Scholar 

  11. Onishchik, A. L.: Transitive Lie superalgebras of vector fields, Reports Dept. Math. Univ. Stockholm 26 (1987), 1–21.

    Google Scholar 

  12. Onishchik, A. L.: Topology of Transitive Transformation Groups J. A. Barth Verlag, Leipzig, 1994.

    Google Scholar 

  13. Onishchik, A. L.: A spectral sequence for the tangent sheaf cohomology of a supermanifold, in Komrakov, B., Krasilshchik, J., Litvinof, G. and Sossinsky, A. (eds.), Sophus Lie’ 94. Proceedings of Conference ISLC, Moscow, August 1994, Kluwer Academic Publishers, Dordrecht, 1997, pp. 23–38.

    Google Scholar 

  14. Onishchik, A. L. and Platonova, O. V.: Homogeneous supermanifolds associated with the complex projective space, II, Mat. Sbornik (1998), to appear [in Russian].

  15. Rothstein, M. J.: Deformations of complex supermanifolds, Proc. Amer. Math. Soc. 95 (1985), 255–260.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onishchik, A.L. A Construction of Non-Split Supermanifolds. Annals of Global Analysis and Geometry 16, 309–333 (1998). https://doi.org/10.1023/A:1006539601455

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006539601455

Navigation