Annals of Global Analysis and Geometry

, Volume 17, Issue 4, pp 329–339 | Cite as

Almost Kähler A-Structures on Twistor Bundles

  • Wlodzimierz Jelonek


The aim of this paper is to give examples of compact almost Kähler A-manifolds.

3-K-structure almost Kähler manifold twistor bundle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atiyah, M. F., Hitchin, N. and Singer, I. M.: Self-duality in four dimensional Riemannian geometry, Proc. Roy. Soc. London A 362 (1978), 425–461.Google Scholar
  2. 2.
    Besse, A.: Einstein Manifolds, Springer-Verlag, Berlin, 1987.Google Scholar
  3. 3.
    Boyer, C. P., Galicki, K. and Mann, B. M.: The geometry and topology of 3-Sasakian manifolds, J. Reine Angew. Math. 455 (1994), 183–220.Google Scholar
  4. 4.
    Davidov, J. and Muskarov, O.: Twistor spaces with Hermitian Ricci tensor, Proc. Amer. Math. Soc. 109 (1990), 1115–1120.Google Scholar
  5. 5.
    Derdziński, A.: Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compositio Math. 49 (1983), 405–433.Google Scholar
  6. 6.
    Goldberg, S. I.: The integrability of almost Kähler structures, Proc. Amer. Math. Soc. 21 (1969), 96–100.Google Scholar
  7. 7.
    Gray, A.: Einstein-like manifolds which are not Einstein, Geom. Dedicata 7 (1978), 259–280.Google Scholar
  8. 8.
    Jelonek, W.: Self-duality and A-manifolds, J. London Math. Soc. (to appear).Google Scholar
  9. 9.
    Jelonek, W.: K-contact A-manifolds, Colloq. Math. 75(1) (1998), 97–103.Google Scholar
  10. 10.
    Konishi, M.: On manifolds with Sasakian 3-structures over quaternion Kählerian manifolds, Kodai Math. Sem. Reps. 26 (1975), 194–200.Google Scholar
  11. 11.
    Kuo, Y.-Y.: On almost contact 3-structures, Tôhoku Math. J. 22 (1970), 325–332.Google Scholar
  12. 12.
    Murokashi, N., Oguro, T. and Sekigawa, K.: Four dimensional almost Kähler locally symmetric spaces, Differential Geom. Appl. 6 (1996), 237–244.Google Scholar
  13. 13.
    Muskarov, O.: Structures presque hermitiennes sur des espaces twistoriles et leur types, C.R. Acad. Sci. Paris 305 (1987), 307–309.Google Scholar
  14. 14.
    Oguro, T. and Sekigawa, K.: Almost Kähler structures on the Riemannian product of a 3-dimensional hyperbolic space and a real line, Tsukuba J. Math. 20 (1996), 151–161.Google Scholar
  15. 15.
    O'Neill, B.: The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459–469.Google Scholar
  16. 16.
    Salamon, S.: Riemannian Geometry and Holonomy Groups, Pitman Research Notes in Math. Ser. 201, Longman Sci. Tech., Harlow, 1989.Google Scholar
  17. 17.
    Salamon, S.: Special structures on four manifolds, Riv. Mat. Univ. Parma (4) 17 (1991), 109–123.Google Scholar
  18. 18.
    Sekigawa, K.: On some compact Einstein almost Kähler manifolds, J. Math. Soc. Japan 36 (1987), 101–116.Google Scholar
  19. 19.
    Tanno, S.: Remarks on a triple of K-contact structures, Tôhoku Math. J. 48 (1996), 519–531.Google Scholar
  20. 20.
    Thurston, W. P.: Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976), 467–468.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Wlodzimierz Jelonek
    • 1
  1. 1.Institute of MathematicsCracow University of TechnologyKrakòwPoland

Personalised recommendations